E2F4 is essential for normal erythrocyte maturation and neonatal viability. (33/620)

The retinoblastoma protein (pRB) plays a key role in the control of normal development and proliferation through the regulation of the E2F transcription factors. We generated a mutant mouse model to assess the in vivo role of the predominant E2F family member, E2F4. Remarkably, loss of E2F4 had no detectable effect on either cell cycle arrest or proliferation. However, E2F4 was essential for normal development. E2f4-/- mice died of an increased susceptibility to opportunistic infections that appeared to result from craniofacial defects. They also displayed a variety of erythroid abnormalities that arose from a cell autonomous defect in late stage maturation. This suggests that E2F4 makes a major contribution to the control of erythrocyte development by the pRB tumor suppressor.  (+info)

A human YAC transgene rescues craniofacial and neural tube development in PDGFRalpha knockout mice and uncovers a role for PDGFRalpha in prenatal lung growth. (34/620)

The platelet-derived growth factor alpha-receptor (PDGFRalpha) plays a vital role in the development of vertebrate embryos, since mice lacking PDGFRalpha die in mid-gestation. PDGFRalpha is expressed in several types of migratory progenitor cells in the embryo including cranial neural crest cells, lung smooth muscle progenitors and oligodendrocyte progenitors. To study PDGFRalpha gene regulation and function during development, we generated transgenic mice by pronuclear injection of a 380 kb yeast artificial chromosome (YAC) containing the human PDGFRalpha gene. The YAC transgene was expressed in neural crest cells, rescued the profound craniofacial abnormalities and spina bifida observed in PDGFRalpha knockout mice and prolonged survival until birth. The ultimate cause of death was respiratory failure due to a defect in lung growth, stemming from failure of the transgene to be expressed correctly in lung smooth muscle progenitors. However, the YAC transgene was expressed faithfully in oligodendrocyte progenitors, which was not previously observed with plasmid-based transgenes containing only upstream PDGFRalpha control sequences. Our data illustrate the complexity of PDGFRalpha genetic control, provide clues to the location of critical regulatory elements and reveal a requirement for PDGF signalling in prenatal lung growth, which is distinct from the known requirement in postnatal alveogenesis. In addition, we found that the YAC transgene did not prolong survival of Patch mutant mice, indicating that genetic defects outside the PDGFRalpha locus contribute to the early embryonic lethality of Patch mice.  (+info)

Partial paternal uniparental disomy of chromosome 6 in an infant with neonatal diabetes, macroglossia, and craniofacial abnormalities. (35/620)

Neonatal diabetes, which can be transient or permanent, is defined as hyperglycemia that presents within the first month of life and requires insulin therapy. Transient neonatal diabetes mellitus has been associated with abnormalities of the paternally inherited copy of chromosome 6, including duplications of a portion of the long arm of chromosome 6 and uniparental disomy, implicating overexpression of an imprinted gene in this disorder. To date, all patients with transient neonatal diabetes mellitus and uniparental disomy have had complete paternal isodisomy. We describe a patient with neonatal diabetes, macroglossia, and craniofacial abnormalities, with partial paternal uniparental disomy of chromosome 6 involving the distal portion of 6q, from 6q24-qter. This observation demonstrates that mitotic recombination of chromosome 6 can also give rise to uniparental disomy and neonatal diabetes, a situation similar to that observed in Beckwith-Wiedemann syndrome, another imprinted disorder. This finding has clinical implications, since somatic mosaicism for uniparental disomy of chromosome 6 should also be considered in patients with transient neonatal diabetes mellitus.  (+info)

Trigonocephaly in rabbits with familial interfrontal suture synostosis: the multiple effects of premature single-suture fusion. (36/620)

Previous studies from our laboratory have characterized the craniofacial morphology and growth patterns of an inbred strain of rabbits with autosomal dominant coronal suture synostosis. A number of rabbit perinates from this colony have been collected sporadically over a 5-year period with premature interfrontal suture synostosis. The present study describes the very early onset of craniofacial dysmorphology of these rabbits and compares them to similar-aged normal control rabbits. A total of 40 perinatal New Zealand White rabbits were used in the present study. Twenty-one comprised the sample with interfrontal suture synostosis and ranged in age from 27 to 38 days postconception (term = 31 days) with a mean age of 33.53 days (+/-2.84 days). Nineteen rabbits served as age-matched, normal controls (mean age = 33.05 days +/-2.79 days). Lateral and dorsoventral radiographs were collected from each rabbit. The radiographs were traced, computer digitized, and 12 craniofacial measurements, angles, and indices were obtained. Mean measures were compared using an unpaired Student's t-test. All synostosed rabbits were stillborn or died shortly after birth. Grossly, these rabbits exhibited extreme frontal bossing, trigonocephaly with sagittal keeling, and midfacial shortening. No somatic anomalies were noted. Radiographically, rabbits with interfrontal suture synostosis had significantly (P < 0.05) narrower bifrontal widths, shorter cranial vault lengths, kyphotic cranial base angles, and different cranial vault indices (shapes) compared to controls. Results reveal severe and early pathological and compensatory cranial vault changes associated with premature interfrontal suture synostosis in this rabbit model. The 100% mortality rate noted in this condition may be related to the inheritance of a lethal genetic mutation or to neural compression from reduced intracranial volume. Results are discussed in light of current pathogenic hypotheses for human infants with premature metopic suture synostosis.  (+info)

Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. (37/620)

Connexin(Cx)43 is the major gap junction protein present in osteoblasts. We have shown that overexpression of Cx45 in osteoblasts expressing endogenous Cx43 leads to decreased cell-cell communication (Koval, M., S.T. Geist, E.M. Westphale, A.E. Kemendy, R. Civitelli, E.C. Beyer, and T.H. Steinberg. 1995. J. Cell Biol. 130:987-995) and transcriptional downregulation of several osteoblastic differentiation markers (Lecanda, F., D.A. Towler, K. Ziambaras, S.-L. Cheng, M. Koval, T.H. Steinberg, and R. Civitelli. 1998. Mol. Biol. Cell 9:2249-2258). Here, using the Cx43-null mouse model, we determined whether genetic deficiency of Cx43 affects skeletal development in vivo. Both intramembranous and endochondral ossification of the cranial vault were delayed in the mutant embryos, and cranial bones originating from migratory neural crest cells were also hypoplastic, leaving an open foramen at birth. Cx43-deficient animals also exhibited retarded ossification of the clavicles, ribs, vertebrae, and limbs, demonstrating that skeletal abnormalities are not restricted to a neural crest defect. However, the axial and appendicular skeleton of Cx43-null animals were essentially normal at birth. Cell to cell diffusion of calcein was poor among Cx43-deficient osteoblasts, whose differentiated phenotypic profile and mineralization potential were greatly impaired, compared with wild-type cells. Therefore, in addition to the reported neural crest cell defect, lack of Cx43 also causes a generalized osteoblast dysfunction, leading to delayed mineralization and skull abnormalities. Cell to cell signaling, mediated by Cx43 gap junctions, was critical for normal osteogenesis, craniofacial development, and osteoblastic function.  (+info)

Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. (38/620)

Although extracellular application of lysophosphatidic acid (LPA) has been extensively documented to produce a variety of cellular responses through a family of specific G protein-coupled receptors, the in vivo organismal role of LPA signaling remains largely unknown. The first identified LPA receptor gene, lp(A1)/vzg-1/edg-2, was previously shown to have remarkably enriched embryonic expression in the cerebral cortex and dorsal olfactory bulb and postnatal expression in myelinating glia including Schwann cells. Here, we show that targeted deletion of lp(A1) results in approximately 50% neonatal lethality, impaired suckling in neonatal pups, and loss of LPA responsivity in embryonic cerebral cortical neuroblasts with survivors showing reduced size, craniofacial dysmorphism, and increased apoptosis in sciatic nerve Schwann cells. The suckling defect was responsible for the death among lp(A1)((-/-)) neonates and the stunted growth of survivors. Impaired suckling behavior was attributable to defective olfaction, which is likely related to developmental abnormalities in olfactory bulb and/or cerebral cortex. Our results provide evidence that endogenous lysophospholipid signaling requires an lp receptor gene and indicate that LPA signaling through the LP(A1) receptor is required for normal development of an inborn, neonatal behavior.  (+info)

Mouse models for the Wolf-Hirschhorn deletion syndrome. (39/620)

Wolf-Hirschhorn syndrome (WHS) is a deletion syndrome caused by segmental haploidy of chromosome 4p16.3. Its hallmark features include a 'Greek warrior helmet' facial appearance, mental retardation, various midline defects and seizures. The WHS critical region (WHSCR) lies between the Huntington's disease gene, HD, and FGFR3. In mice, the homologs of these genes map to chromosome 5 in a region of conserved synteny with human 4p16.3. To derive mouse models of WHS and map genes responsible for subphenotypes of the syndrome, five mouse lines bearing radiation-induced deletions spanning the WHSCR syntenic region were generated and characterized. Similar to WHS patients, these animals were growth-retarded, were susceptible to seizures and showed midline (palate closure, tail kinks), craniofacial and ocular anomalies (colobomas, corneal opacities). Other phenotypes included cerebellar hypoplasia and a shortened cerebral cortex. Expression of WHS-like traits was variable and influenced by strain background and deletion size. These mice represent the first animal models for WHS. This collection of nested chromosomal deletions will be useful for mapping and identifying loci responsible for the various subphenotypes of WHS, and provides a paradigm for the dissection of other deletion syndromes using the mouse.  (+info)

Neurodevelopmental risk factors in schizophrenia. (40/620)

The authors review environmental and neurodevelopmental risk factors for schizophrenic disorders, with emphasis on minor physical anomalies, particularly craniofacial anomalies and dermatoglyphic variations. The high prevalence of these anomalies among schizophrenic subjects supports the neurodevelopmental theory of the etiology of schizophrenia, since they suggest either genetically or epigenetically controlled faulty embryonic development of structures of ectodermal origin like brain and skin. This may disturb neurodevelopment that in turn may cause these subjects to be at increased risk for the development of schizophrenia and related disorders. The precise confirmation of this theory, at least in some cases, will provide further understanding of these illnesses, allowing easy and inexpensive identification of subjects at risk and providing guidelines for the development of new pharmacological interventions for early treatment and even for primary prevention of the illness.  (+info)