A simplified subtractive hybridization protocol used to isolate DNA sequences specific to Xylella fastidiosa. (65/7133)

A simplified protocol of subtractive hybridization based on the technique of L. M. Kunkel, A. P. Monaco, W. Middlesworth, H. D. Ochs & S. A. Latt (1985, Proc Natl Acad Sci USA, 82, 4778-4782) was used to obtain DNA sequences specific to Xylella fastidiosa isolated from diseased citrus plants. As a driver, DNA extracted from bacteria showing different degrees of relatedness was used: Xy. fastidiosa 788 isolated from another host (plum), Xanthomonas campestris pv. campestris and Burkholderia gladioli strains. A DNA fragment, f14, showing no hybridization to the driver DNA, was used as a probe specific to Xy. fastidiosa from citrus and oleander. This fragment was sequenced and the predicted protein showed 40% similarity to the central region of flagellin of Escherichia coli serotypes H1 and H12. A pair of internal primers (f14-1 and f14-2) was designed for amplification of Xy. fastidiosa DNA. These primers detected Xy. fastidiosa strains isolated from citrus and oleander and yielded an amplification product of about 600 bp. They were also able to detect the bacteria in extracts from citrus plants with or without symptoms of disease. No amplification reaction was obtained using DNA extracted from other species and pathovars of Xanthomonas, Pseudomonas cichorii, Erwinia carotovora, Agrobacterium tumefaciens and phytopathogens of citrus (Xanthomonas axonopodis pv. citri) and coffee (Burkholderia andropogonis, P. cichorii, Pseudomonas syringae pv. garcae). The isolation of a DNA fragment specific to Xy. fastidiosa from citrus showed that the simplified protocol of subtractive hybridization used in this work is potentially applicable to other micro-organisms.  (+info)

Development and use of a reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in planta. (66/7133)

The Tri5 gene encodes trichodiene synthase, which catalyzes the first reaction in the trichothecene biosynthetic pathway. In vitro, a direct relationship was observed between Tri5 expression and the increase in deoxynivalenol production over time. We developed a reverse transcription (RT)-PCR assay to quantify Tri5 gene expression in trichothecene-producing strains of Fusarium species. We observed an increase in Tri5 expression following treatment of Fusarium culmorum with fungicides, and we also observed an inverse relationship between Tri5 expression and biomass, as measured by beta-D-glucuronidase activity, during colonization of wheat (cv. Avalon) seedlings by F. culmorum. RT-PCR analysis also showed that for ears of wheat cv. Avalon inoculated with F. culmorum, there were different levels of Tri5 expression in grain and chaff at later growth stages. We used the Tri5-specific primers to develop a PCR assay to detect trichothecene-producing Fusarium species in infected plant material.  (+info)

Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. (67/7133)

It has been reported that the growth of Ralstonia solanacearum is suppressed at the rhizoplane of tomato plants and that tomato bacterial wilt is suppressed in plants grown in a soil (Mutsumi) in Japan. To evaluate the biological factors contributing to the suppressiveness of the soil in three treated Mutsumi soils (chloroform fumigated soil; autoclaved soil mixed with intact Mutsumi soil; and autoclaved soil mixed with intact, wilt-conducive Yamadai soil) infested with R. solanacearum, we bioassayed soil samples for tomato bacterial wilt. Chloroform fumigation increased the extent of wilt disease. More of the tomato plant samples wilted when mixed with Yamadai soil than when mixed with Mutsumi soil. Consequently, the results indicate that the naturally existing population of microorganisms in Mutsumi soil was significantly able to reduce the severity of bacterial wilt of tomato plants. To characterize the types of bacteria present at the rhizoplane, we isolated rhizoplane bacteria and classified them into 22 groups by comparing their 16S restriction fragment length polymorphism patterns. In Yamadai soil a single group of bacteria was extremely predominant (73.1%), whereas in Mutsumi soil the distribution of the bacterial groups was much more even. The 16S rDNA sequence analysis of strains of dominant groups suggested that gram-negative bacteria close to the beta-proteobacteria were most common at the rhizoplane of the tomato plants. During in vitro assays, rhizoplane bacteria in Mutsumi soil grew more vigorously on pectin, one of the main root exudates of tomato, compared with those in Yamadai soil. Our results imply that it is difficult for the pathogen to dominate in a diversified rhizobacterial community that thrives on pectin.  (+info)

Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi. (68/7133)

The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths.  (+info)

Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. (69/7133)

Root colonization of Arabidopsis thaliana by the nonpathogenic, rhizosphere-colonizing, biocontrol bacterium Pseudomonas fluorescens WCS417r has been shown to elicit induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst). The ISR response differs from the pathogen-inducible systemic acquired resistance (SAR) response in that ISR is independent of salicylic acid and not associated with pathogenesis-related proteins. Several ethylene-response mutants were tested and showed essentially normal symptoms of Pst infection. ISR was abolished in the ethylene-insensitive mutant etr1-1, whereas SAR was unaffected. Similar results were obtained with the ethylene-insensitive mutants ein2 through ein7, indicating that the expression of ISR requires the complete signal-transduction pathway of ethylene known so far. The induction of ISR by WCS417r was not accompanied by increased ethylene production in roots or leaves, nor by increases in the expression of the genes encoding the ethylene biosynthetic enzymes 1-aminocyclopropane-1-carboxylic (ACC) synthase and ACC oxidase. The eir1 mutant, displaying ethylene insensitivity in the roots only, did not express ISR upon application of WCS417r to the roots, but did exhibit ISR when the inducing bacteria were infiltrated into the leaves. These results demonstrate that, for the induction of ISR, ethylene responsiveness is required at the site of application of inducing rhizobacteria.  (+info)

An early salicylic acid-, pathogen- and elicitor-inducible tobacco glucosyltransferase: role in compartmentalization of phenolics and H2O2 metabolism. (70/7133)

Treatment of tobacco cell suspension cultures with a fungal elicitor of defense responses resulted in an early accumulation of the phenylpropanoid glucosyltransferase TOGT, along with the rapid synthesis and secretion of scopolin, the glucoside of scopoletin. Elicitor-triggered extracellular accumulation of the aglycone scopoletin and of free caffeic and ferulic acids could only be revealed in the presence of diphenylene iodonium, an inhibitor of extracellular H2O2 production. Our results strongly support a role for TOGT in the elicitor-stimulated production of transportable phenylpropanoid glucosides, followed by the release of free antioxidant phenolics into the extracellular medium and subsequent H2O2 scavenging.  (+info)

Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. (71/7133)

H(2)O(2) from the oxidative burst, cell death, and defense responses such as the production of phenylalanine ammonia lyase (PAL), salicylic acid (SA), and scopoletin were analyzed in cultured tobacco (Nicotiana tabacum) cells treated with three proteinaceous elicitors: two elicitins (alpha-megaspermin and beta-megaspermin) and one glycoprotein. These three proteins have been isolated from Phytophthora megasperma H20 and have been previously shown to be equally efficient in inducing a hypersensitive response (HR) upon infiltration into tobacco leaves. However, in cultured tobacco cells these elicitors exhibited strikingly different biological activities. beta-Megaspermin was the only elicitor that caused cell death and induced a strong, biphasic H(2)O(2) burst. Both elicitins stimulated PAL activity similarly and strongly, while the glycoprotein caused only a slight increase. Only elicitins induced SA accumulation and scopoletin consumption, and beta-megaspermin was more efficient. To assess the role of H(2)O(2) in HR cell death and defense response expression in elicitin-treated cells, a gain and loss of function strategy was used. Our results indicated that H(2)O(2) was neither necessary nor sufficient for HR cell death, PAL activation, or SA accumulation, and that extracellular H(2)O(2) was not a direct cause of intracellular scopoletin consumption.  (+info)

Tobacco O-methyltransferases involved in phenylpropanoid metabolism. The different caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyltransferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns. (72/7133)

The biosynthesis of lignin monomers involves two methylation steps catalyzed by orthodiphenol-O-methyltransferases: caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferases (COMTs) and caffeoyl-coenzyme A (CoA)/5-hydroxyferuloyl-CoA 3/5-O-methyltransferases (CCoAOMTs). Two COMT classes (I and II) were already known to occur in tobacco (Nicotiana tabacum) and three distinct CCoAOMT classes have now been characterized. These three CCoAOMT classes displayed a maximum level of expression at different stages of stem development, in accordance with their involvement in the synthesis of lignin guaiacyl units. Expression profiles upon tobacco mosaic virus infection of tobacco leaves revealed a biphasic pattern of induction for COMT I, COMT II, and CCoAOMTs. The different isoforms were expressed in Escherichia coli and our results showed that CCoAOMTs and, more surprisingly, COMTs efficiently methylated hydroxycinnamoyl-CoA esters. COMT I was also active toward 5-hydroxyconiferyl alcohol, indicating that COMT I that catalyzes syringyl unit synthesis in planta may operate at the free acid, CoA ester, or alcohol levels. COMT II that is highly inducible by infection also accepted caffeoyl-CoA as a substrate, thus suggesting a role in ferulate derivative deposition in the walls of infected cells. Tobacco appears to possess an array of O-methyltransferase isoforms with variable efficiency toward the diverse plant o-diphenolic substrates.  (+info)