Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. (1/486)

The transcription factor recombination signal binding protein-J (RBP-J) functions immediately downstream of the cell surface receptor Notch and mediates transcriptional activation by the intracellular domain of all four kinds of Notch receptors. To investigate the function of RBP-J, we introduced loxP sites on both sides of the RBP-J exons encoding its DNA binding domain. Mice bearing the loxP-flanked RBP-J alleles, RBP-J(f/f), were mated with Mx-Cre transgenic mice and deletional mutation of the RBP-J gene in adult mice was induced by injection of the IFN-alpha inducer poly(I)-poly(C). Here we show that inactivation of RBP-J in bone marrow resulted in a block of T cell development at the earliest stage and increase of B cell development in the thymus. Lymphoid progenitors deficient in RBP-J differentiate into B but not T cells when cultured in 2'-deoxyguanosine-treated fetal thymic lobes by hanging-drop fetal thymus organ culture. Competitive repopulation assay also revealed cell autonomous deficiency of T cell development from bone marrow of RBP-J knockout mouse. Myeloid and B lineage differentiation appears normal in the bone marrow of RBP-J-inactivated mice. These results suggest that RBP-J, probably by mediating Notch signaling, controls T versus B cell fate decision in lymphoid progenitors.  (+info)

A case of severe B cell deficiency after allogeneic stem cell transplantation. (2/486)

Insufficient immunological reconstitution is one of the serious complications of allogeneic stem cell transplantation (SCT). We report a case of severely impaired B-lymphopoiesis after allogeneic SCT for CML. The patient's bone marrow and blood cells display complete chimerism and he is currently free from leukemia. His serum immunoglobulin levels are below detection level, and B cells are absent at 2 years post transplant in both the bone marrow and blood. Other populations appear to be normal. To the best of our knowledge, this is the first report of B-lymphopoiesis being undetectable more than 2 years after allogeneic SCT.  (+info)

The in vivo development of human T cells from CD34(+) cells in the murine thymic environment. (3/486)

There is increasing evidence that human hematopoietic stem cells can develop into lymphocytes expressing T cell surface markers in the organ culture of murine embryonic thymic lobes. If human T cells with functional maturity are inducible from human stem cells in the mouse, it may be a useful model to investigate human T cell development and the human immune response in vivo. To approach this, we produced a hybrid cluster of murine fetal thymic epithelial cells and human cord blood-derived CD34(+) cells (hu/m cluster) using reaggregate thymic organ culture, and subsequently implanted it under the kidney capsule of NOD/SCID mice. The implanted hu/m cluster grew in volume under the kidney capsule and contained increased numbers of CD4(+)CD8(+)cells as well as CD4 or CD8 single-positive cells with low CD1a expression. These lymphocytes were also shown to possess activity for producing IL-2 and IL-4. Characteristics similar to human T cells also developed in the thymus of newly established mice lacking NK activity from NOD/SCID mice. These results indicate that functionally mature T cells can develop in vivo from human hematopoietic progenitors in the murine environment composed of thymic epithelial cells.  (+info)

B cells develop in the zebrafish pancreas. (4/486)

The zebrafish, with its transparent free-living embryo, is a useful organism for investigating early stages in lymphopoiesis. Previously, we showed that T cells differentiate in the thymus by day 4, but no sites for B cell differentiation were seen until 3 weeks. We report here that on day 4, we detect rearrangements of genes encoding B cell receptors in DNA extracted from whole fish. Also by day 4, rag1 transcripts are seen in the pancreas, an organ not previously associated with lymphopoiesis; by day 10, Igmu transcripts are detected here. Thus, in zebrafish, the pancreas assumes the role of both the liver in fetal mice and the spleen in neonatal mice.  (+info)

Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. (5/486)

T cell development and selection require the fully mature and diverse epithelial microenvironment of the thymus. Acquisition of these characteristics is dependent on expression of the forkhead (also known as winged-helix) transcription factor FoxN1, as a lack of functional FoxN1 results in aberrant epithelial morphogenesis and an inability to attract lymphoid precursors to the thymus primordium. However, the transcriptional control of Foxn1 expression has not been elucidated. Here we report that secreted Wnt glycoproteins, expressed by thymic epithelial cells and thymocytes, regulate epithelial Foxn1 expression in both autocrine and paracrine fashions. Wnt molecules therefore provide regulatory signals critical for thymic function.  (+info)

The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. (6/486)

We utilized gene targeting by homologous recombination to define the role that MEF, a transcriptional activating member of the ETS family of transcription factors, plays in lymphopoiesis. MEF-/- mice have a profound reduction in the number of NK-T and NK cells. Purified MEF-/- NK cells cannot lyse tumor cell targets and secrete only minimal amounts of IFNgamma. Perforin protein expression is severely impaired in MEF-deficient NK cells, likely accounting for the lack of tumor cell cytotoxicity. Promoter studies and chromatin immunoprecipitation analyses demonstrate that MEF and not ETS-1 directly regulates transcription of the perforin gene in NK cells. Our results uncover a specific role of MEF in the development and function of NK cells and in innate immunity.  (+info)

Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. (7/486)

The first lineage commitment step of hematopoietic stem cells (HSC) results in separation into distinct lymphoid and myeloid differentiation pathways, reflected in the generation of common lymphoid and myeloid progenitors (CLP and CMP, respectively). In this report we present the first evidence for a nonredundant regulator of this process, in that adult mice deficient in expression of the flt3 ligand (FL) have severely (10-fold) reduced levels of the CLP, accompanied by reductions in the earliest identifiable B and T cell progenitors. In contrast, CMP and HSC are unaffected in FL-deficient mice. Noteworthy, CLP express high levels of both the flt3 receptor and ligand, indicating a potential autocrine role of FL in regulation of the earliest lymphoid commitment step from HSC.  (+info)

Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. (8/486)

The developmental progression from pro-B to pre-B cells is controlled by pre-B cell receptor (pre-BCR) signaling which depends on BLNK (SLP-65) for coupling the Syk kinase to its downstream effector pathways. Here we identified BLNK as a direct target of the transcription factor Pax5 (BSAP). Restoration of BLNK expression in Ig(mu) transgenic Pax5(-/-) pro-B cells resulted in constitutive pre-BCR signaling and increased cell proliferation without inducing progression to the pre-B cell stage. Ig(mu)(+) Pax5(-/-) pro-B cells expressing a BLNK-estrogen receptor fusion protein initiated signaling immediately upon hormone addition, which facilitated analysis of pre-BCR-induced gene expression changes. The pre-BCR was shown to execute its checkpoint function by regulating genes involved in cell proliferation, intracellular signaling, growth factor responsiveness, and V(D)J recombination.  (+info)