Cell populations in lesions of cutaneous leishmaniasis of Leishmania (L.) amazonensis- infected rhesus macaques, Macaca mulatta. (25/463)

The cellular nature of the infiltrate in cutaneous lesion of rhesus monkeys experimentally infected with Leishmania (L.) amazonensis was characterized by immunohistochemistry. Skin biopsies from infected animals with active or healing lesions were compared to non-infected controls (three of each type) to quantitate inflammatory cell types. Inflammatory cells (composed of a mixture of T lymphocyte subpopulations, macrophages and a small number of natural killer cells and granulocytes) were more numerous in active lesions than in healing ones. T-cells accounted for 44.7 +/- 13.1% of the infiltrate in active lesions (versus CD2+ = 40.3 +/- 5.7% in healing lesions) and T-cell ratios favor CD8+ cells in both lesion types. The percentage of cells expressing class II antigen (HLA-DR+) in active lesions (95 +/- 7.1%) was significantly higher (P < 0.005) from the healing lesions (42.7 +/- 12.7%). Moreover, the expression of the activation molecules CD25 (@ 16%), the receptor for interleukin-2, suggests that many T cells are primed and proliferating in active lesions. Distinct histopathological patterns were observed in lesions at biopsy, but healing lesions contained more organized epithelioid granulomas and activated macrophages, followed by fibrotic substitution. The progression and resolution of skin lesions appears to be very similar to that observed in humans, confirming the potential for this to be used as a viable model to study the immune response in human cutaneous leishmaniasis.  (+info)

Expression and characterization of a recombinant cysteine proteinase of Leishmania mexicana. (26/463)

A major cysteine proteinase (CPB) of Leishmania mexicana, that is predominantly expressed in the form of the parasite that causes disease in mammals, has been overexpressed in Escherichia coli and purified from inclusion bodies to apparent homogeneity. The CPB enzyme, CPB2.8, was expressed as an inactive pro-form lacking the characteristic C-terminal extension (CPB2.8DeltaCTE). Pro-region processing was initiated during protein refolding and proceeded through several intermediate stages. Maximum enzyme activity accompanied removal of the entire pro-region. This was facilitated by acidification. Purified mature enzyme gave a single band on SDS/PAGE and gelatin SDS/PAGE gels, co-migrated with native enzyme in L. mexicana lysates, and had the same N-terminal sequence as the native enzyme. The procedure yielded >3.5 mg of active enzyme per litre of E. coli culture.  (+info)

Leishmania mexicana mutants lacking glycosylphosphatidylinositol (GPI):protein transamidase provide insights into the biosynthesis and functions of GPI-anchored proteins. (27/463)

The major surface proteins of the parasitic protozoon Leishmania mexicana are anchored to the plasma membrane by glycosylphosphatidylinositol (GPI) anchors. We have cloned the L. mexicana GPI8 gene that encodes the catalytic component of the GPI:protein transamidase complex that adds GPI anchors to nascent cell surface proteins in the endoplasmic reticulum. Mutants lacking GPI8 (DeltaGPI8) do not express detectable levels of GPI-anchored proteins and accumulate two putative protein-anchor precursors. However, the synthesis and cellular levels of other non-protein-linked GPIs, including lipophosphoglycan and a major class of free GPIs, are not affected in the DeltaGPI8 mutant. Significantly, the DeltaGPI8 mutant displays normal growth in liquid culture, is capable of differentiating into replicating amastigotes within macrophages in vitro, and is infective to mice. These data suggest that GPI-anchored surface proteins are not essential to L. mexicana for its entry into and survival within mammalian host cells in vitro or in vivo and provide further support for the notion that free GPIs are essential for parasite growth.  (+info)

The ionization of a buried glutamic acid is thermodynamically linked to the stability of Leishmania mexicana triose phosphate isomerase. (28/463)

The amino acid sequence of Leishmania mexicana triose phosphate isomerase is unique in having at position 65 a glutamic acid instead of a glutamine. The stability properties of LmTIM and the E65Q mutant were investigated by pH and guanidinium chloride-induced unfolding. The crystal structure of E65Q was determined. Three important observations were made: (a) there are no structural rearrangements as the result of the substitution; (b) the mutant is more stable than the wild-type; and (c) the stability of the wild-type enzyme shows strong pH dependence, which can be attributed to the ionization of Glu65. Burying of the Glu65 side chain in the uncharged environment of the dimer interface results in a shift in pKa of more than 3 units. The pH-dependent decrease in overall stability is due to weakening of the monomer-monomer interactions (in the dimer). The E65Q substitution causes an increase in stability as the result of the formation of an additional hydrogen bond in each subunit (DeltaDeltaG degrees of 2 kcal.mol-1 per monomer) and the elimination of a charged group in the dimer interface (DeltaDeltaG degrees of at least 9 kcal.mol-1 per dimer). The computated shift in pKa and the stability of the dimer calculated from the charge distribution in the protein structure agree closely with the experimental results. The guanidinium chloride dependence of the unfolding constant was smaller than expected from studies involving monomeric model proteins. No intermediates could be identified in the unfolding equilibrium by combining fluorescence and CD measurements. Study of a stable monomeric triose phosphate isomerase variant confirmed that the phenomenon persists in the monomer.  (+info)

Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. (29/463)

Cell surface lipophosphoglycan (LPG) is commonly regarded as a multifunctional Leishmania virulence factor required for survival and development of these parasites in mammals. In this study, the LPG biosynthesis gene lpg1 was deleted in Leishmania mexicana by targeted gene replacement. The resulting mutants are deficient in LPG synthesis but still display on their surface and secrete phosphoglycan-modified molecules, most likely in the form of proteophosphoglycans, whose expression appears to be up-regulated. LPG-deficient L.mexicana promastigotes show no significant differences to LPG-expressing parasites with respect to attachment to, uptake into and multiplication inside macrophages. Moreover, in Balb/c and C57/BL6 mice, LPG-deficient L.mexicana clones are at least as virulent as the parental wild-type strain and lead to lethal disseminated disease. The results demonstrate that at least L. mexicana does not require LPG for experimental infections of macrophages or mice. Leishmania mexicana LPG is therefore not a virulence factor in the mammalian host.  (+info)

A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana. (30/463)

BACKGROUND: NAD-dependent glycerol-3-phosphate dehydrogenase (GPDH) catalyzes the interconversion of dihydroxyacetone phosphate and L-glycerol-3-phosphate. Although the enzyme has been characterized and cloned from a number of sources, until now no three-dimensional structure has been determined for this enzyme. Although the utility of this enzyme as a drug target against Leishmania mexicana is yet to be established, the critical role played by GPDH in the long slender bloodstream form of the related kinetoplastid Trypanosoma brucei makes it a viable drug target against sleeping sickness. RESULTS: The 1.75 A crystal structure of apo GPDH from L. mexicana was determined by multiwavelength anomalous diffraction (MAD) techniques, and used to solve the 2.8 A holo structure in complex with NADH. Each 39 kDa subunit of the dimeric enzyme contains a 189-residue N-terminal NAD-binding domain and a 156-residue C-terminal substrate-binding domain. Significant parts of both domains share structural similarity with plant acetohydroxyacid isomeroreductase. The discovery of extra, fatty-acid like, density buried inside the C-terminal domain indicates a possible post-translational modification with an associated biological function. CONCLUSIONS: The crystal structure of GPDH from L. mexicana is the first structure of this enzyme from any source and, in view of the sequence identity of 63%, serves as a valid model for the T. brucei enzyme. The differences between the human and trypanosomal enzymes are extensive, with only 29% sequence identity between the parasite and host enzyme, and support the feasibility of exploiting the NADH-binding site to develop selective inhibitors against trypanosomal GPDH. The structure also offers a plausible explanation for the observed inhibition of the T. brucei enzyme by melarsen oxide, the active form of the trypanocidal drugs melarsoprol and cymelarsan.  (+info)

IL-4-independent inhibition of IL-12 responsiveness during Leishmania amazonensis infection. (31/463)

Leishmania amazonensis induces a nonhealing infection in C3H mice, whereas infection with Leishmania major is self-healing. We found that C3H mice infected with L. amazonensis exhibited decreased IL-12 production, which could account for the susceptibility to this organism. However, exogenous IL-12 administration failed to induce a healing immune response. The failure of L. amazonensis-infected C3H mice to respond to IL-12 was associated with a specific defect in IL-12 receptor beta2 (IL-12Rbeta2) mRNA expression by CD4+ T cells. Furthermore, decreased IL-12Rbeta2 mRNA expression correlated with a decrease in the IL-12-signaling capacity of the lymph node (LN) cells. IL-4 did not contribute to susceptibility or down-regulation of the IL-12Rbeta2 subunit, because IL-4-/- mice remained susceptible to L. amazonensis infection, even after IL-12 administration, and CD4+ cells from infected IL-4-/- mice also had reduced expression of IL-12Rbeta2 mRNA. These results demonstrate that regulation of the IL-12 receptor, independent of IL-4, is a point of control for the immune response to leishmaniasis. In contrast to experimental L. major infections, where host genetics control susceptibility, these studies demonstrate that the lack of IL-12 responsiveness may be dictated by the pathogen, rather than the host.  (+info)

Action of pentoxifylline on experimental cutaneous leishmaniasis due to Leishmania (Leishmania) amazonensis. (32/463)

In the animal model of leishmaniasis caused by Leishmania (Leishmania) amazonensis there is a complex mechanism of the host-parasite interaction. The present study was performed to interfere with the inflammatory reaction to the parasites, through immune modulation. Female C5BL/6 isogenic mice were used, some of which were inoculated on the right ear and others on the right footpad with 3.10(6) stationary phase promastigotes of the MHOM/BR/PH8 strain of L. (L.) amazonensis, and were allocated in three groups: the first received pentoxifylline 8mg/kg every 12 h, since the first day; the second one received the same dose since the 40th day of infection and a control group that did not receive any treatment. All the ears excised were analyzed to determine the variation in weight between both ears and for histopathological analyses. A quantification of the parasites was done using the limiting dilution assay. A significant reduction of the number of parasites, was observed among the animals treated which had an accordingly significant reduction on the weight of the ears. Pentoxifylline reduced the macrophages propensity to vacuolation and induced a more effective destruction of the parasites by these cells. Moreover, the group that began the treatment later did not show the same effectiveness.  (+info)