Young women taking isotretinoin still conceive. Role of physicians in preventing disaster. (1/188)

QUESTION: One of my adolescent patients was prescribed isotretinoin for severe acne by a dermatologist. I was shocked to discover she does not use any means of contraception. The dermatologist insists he told her about the need for contraception. How can we do better? ANSWER: Clearly this dermatologist, like many of his colleagues, does not comply with the Pregnancy Prevention Program. Until physicians become more aware of this program, babies will continue to be born with embryopathy due to isotretinoin.  (+info)

Topical psoriasis therapy. (2/188)

Psoriasis is a common dermatosis, affecting from 1 to 3 percent of the population. Until recently, the mainstays of topical therapy have been corticosteroids, tars, anthralins and keratolytics. Recently, however, vitamin D analogs, a new anthralin preparation and topical retinoids have expanded physicians' therapeutic armamentarium. These new topical therapies offer increased hope and convenience to the large patient population with psoriasis.  (+info)

Fomepizole for the treatment of ethylene glycol poisoning. Methylpyrazole for Toxic Alcohols Study Group. (3/188)

BACKGROUND: Ethylene glycol poisoning causes metabolic acidosis and renal failure and may cause death. The standard treatment is inhibition of alcohol dehydrogenase with ethanol, given in intoxicating doses, and adjunctive hemodialysis. We studied the efficacy of fomepizole, a new inhibitor of alcohol dehydrogenase, in the treatment of ethylene glycol poisoning. METHODS: We administered intravenous fomepizole to 19 patients with ethylene glycol poisoning (plasma ethylene glycol concentration, > or =20 mg per deciliter [3.2 mmol per liter]). Patients who met specific criteria also underwent hemodialysis. Treatment was continued until plasma ethylene glycol concentrations were less than 20 mg per deciliter. Acid-base status, renal function, the kinetics of fomepizole, and ethylene glycol metabolism were assessed at predetermined intervals. RESULTS: Fifteen of the patients initially had acidosis (mean serum bicarbonate concentration, 12.9 mmol per liter). Acid-base status tended to normalize within hours after the initiation of treatment with fomepizole. One patient with extreme acidosis died. In nine patients, renal function decreased during therapy; at enrollment, all nine had high serum creatinine concentrations and markedly elevated plasma glycolate concentrations (> or =97.7 mg per deciliter [12.9 mmol per liter]). None of the 10 patients with normal serum creatinine concentrations at enrollment had renal injury during treatment; all 10 had plasma glycolate concentrations at or below 76.8 mg per deciliter (10.1 mmol per liter). Renal injury was independent of the initial plasma ethylene glycol concentration. The plasma concentration of glycolate and the urinary excretion of oxalate, the major metabolites of ethylene glycol, uniformly fell after the initiation of fomepizole therapy. Few adverse effects were attributable to fomepizole. CONCLUSIONS: In patients with ethylene glycol poisoning, fomepizole administered early in the course of intoxication prevents renal injury by inhibiting the formation of toxic metabolites.  (+info)

Structural basis for engineering of retinoic acid receptor isotype-selective agonists and antagonists. (4/188)

BACKGROUND: Many synthetic retinoids have been generated that exhibit a distinct pattern of agonist/antagonist activities with the three retinoic acid receptors (RARalpha, RARbeta and RARgamma). Because these retinoids are selective tools with which to dissect the pleiotropic functions of the natural pan-agonist, retinoic acid, and might constitute new therapeutic drugs, we have determined the structural basis of their receptor specificity and compared their activities in animal and yeast cells. RESULTS: There are only three divergent amino acid residues in the ligand binding pockets (LBPs) of RARalpha, RARbeta and RARgamma. We demonstrate here that the ability of monospecific (class I) retinoid agonists and antagonists to bind to and induce or inhibit transactivation by a given isotype is directly linked to the nature of these residues. The agonist/antagonist potential of class II retinoids, which bind to all three RARs but depending on the RAR isotype have the potential to act as agonists or antagonists, was also largely determined by the three divergent LBP residues. These mutational studies were complemented by modelling, on the basis of the three-dimensional structures of the RAR ligand-binding domains, and a comparison of the retinoid agonist/antagonist activities in animal and yeast cells. CONCLUSIONS: Our results reveal the rational basis of RAR isotype selectivity, explain the existence of class I and II retinoids, and provide a structural concept of ligand-mediated antagonism. Interestingly, the agonist/antagonist characteristics of retinoids are not conserved in yeast cells, suggesting that yeast co-regulators interact with RARs in a different way than the animal cell homologues do.  (+info)

Retinoic acid prevents phosphorylation of pRB in normal human B lymphocytes: regulation of cyclin E, cyclin A, and p21(Cip1). (5/188)

The mechanisms underlying the growth-inhibitory effect of retinoids on normal human B lymphocytes are not well understood. We addressed this issue by examining the effect of retinoic acid on the cell cycle machinery involved in G1/S transition. When retinoic acid was administered to B cells stimulated into mid to late G1 by anti-IgM antibodies (anti-mu) and Staphylococcus aureus crude cell suspension (SAC), the phosphorylation of pRB required for S-phase entry was prevented in a time- and dose-dependent manner. Thus, 2-hour treatment with retinoic acid at the optimal concentration of 1 micromol/L prevented phosphorylation of pRB, and effects were noted at concentrations as low as 10 nmol/L. Based on our results, we suggest that the rapid effect of retinoic acid on pRB phosphorylation is due primarily to the reduced expression of cyclin E and cyclin A in late G1. This could lead to the diminished cyclin E- and cyclin A-associated kinase activities noted as early as 2 hours after addition of retinoic acid. Furthermore, our results imply that the transient induction of p21(Cip1) could also be involved. Thus, retinoic acid induced a rapid, but transient increased binding of p21(Cip1) to CDK2. The retinoic acid receptor (RAR) agonist TTNPB mimicked the key events affected by retinoic acid, such as pRB phosphorylation, cyclin E expression, and expression of p21(Cip1), whereas the RAR-selective antagonist Ro 41-5253 counteracted the effects of retinoic acid. This implies that retinoic acid mediates its growth-inhibitory effect on B lymphocytes via the nuclear receptors.  (+info)

Ethylene glycol developmental toxicity: unraveling the roles of glycolic acid and metabolic acidosis. (6/188)

This study sought to determine the relative roles of glycolic acid (GA), a toxicologically important metabolite of ethylene glycol (EG), and metabolic acidosis in causing developmental toxicity in Sprague-Dawley rats. To tease apart these two interrelated factors, we developed an experimental approach in which high blood glycolate levels could be achieved, in either the presence or absence of metabolic acidosis. Initially, rats previously implanted with a carotid artery cannula were given, on gestation day (gd) 10, 40.3 mmol/kg (2500 mg/kg) of EG via gavage, 8.5 mmol/kg (650 mg/kg) of GA via gavage, 8.5 mmol/kg (833 mg/kg) of sodium glycolate (NaG; pH 7.4) via subcutaneous (sc) injection, or distilled water via gavage (control). Peak serum glycolate was nearly identical (8.4-8.8 mM) in the EG, GA, and NaG groups and, as expected, EG and GA caused a metabolic acidosis, but acid base balance was normal with NaG. Subsequently, these treatments were given on gd 6-15 to groups of 25 time-mated rats, followed by fetal evaluation on gd 21. EG and GA decreased fetal body weights and caused a similar spectrum of developmental effects, including numerous axial skeleton malformations. NaG treatment also caused slight decreases in fetal body weight, increases in skeletal variations, and totally malformed fetuses. These results indicate that glycolate, in the absence of metabolic acidosis, can cause the most sensitive of EG's developmental effects, whereas metabolic acidosis appears to interact with glycolate at very high doses to markedly enhance teratogenesis. These results support previous studies, which indicated that glycolate is the proximate developmental toxicant for EG, and that GA toxicokinetic parameters can be used to define a quantitative, physiologically based threshold for EG-induced developmental effects.  (+info)

An analysis of the early events when oligodendrocyte precursor cells are triggered to differentiate by thyroid hormone, retinoic acid, or PDGF withdrawal. (7/188)

Oligodendrocyte precursor cells withdraw from the cell cycle and terminally differentiate after a limited number of cell divisions. The timing of cell-cycle withdrawal and differentiation is controlled by an intrinsic timer, which consists of a timing component that measures elapsed time and an effector component that arrests the cell cycle and initiates differentiation. The effector component can be triggered by either thyroid hormone (TH) or retinoic acid (RA). In this study we investigate how TH and RA act to trigger differentiation. We show the following: (1) Synthetic retinoids that can inhibit AP-1 transcription factors but do not activate gene transcription cannot trigger the effector mechanism, suggesting that TH and RA do not act only by inhibiting AP-1 activity as previously suggested. (2) Both TH and RA induce a transcriptionally dependent antigenic change in purified precursor cells within 2-4 h. (3) Unexpectedly, even before they differentiate, the precursor cells express ceramide galactosyltransferase (CGT), the enzyme that catalyzes the final step in the synthesis of galactocerebroside, an early marker of oligodendrocyte differentiation. (4) Neither TH nor RA directly activates the transcription of the CGT gene, a number of immediate early genes, or the genes that encode any of the known cyclin-dependent kinase inhibitors. (5) The withdrawal of the mitogen platelet-derived growth factor (PDGF), but not TH or RA treatment, causes a rapid decrease in c-fos, NGFI-A/Krox-24, and cyclin D2 mRNA, even though all three treatments trigger cell-cycle arrest and differentiation. (6) PDGF withdrawal and TH treatment, but not RA treatment, induce an increase in cyclin D3 mRNA within 4 h. Thus, we have not found any early changes in gene expression that occur with all three treatments that trigger oligodendrocyte differentiation.  (+info)

The early expression control of Xepsin by nonaxial and planar posteriorizing signals in Xenopus epidermis. (8/188)

The control mechanism of the anteroposterior axis specification in Xenopus epidermis was studied by comparing the expression of a novel anterior marker, Xepsin, with that of a panepidermal marker, type I keratin. Xepsin mRNA, which encodes a novel Xenopus serine protease, is transcribed zygotically with the expression peak in neurula stages. In normal development, its expression is limited to the anterior and anterior-dorsal portions within epidermis during neurula and tailbud stages, respectively. In UV-irradiated ventralized embryos (dorsoanterior index, DAI 0 and 1), an expression boundary for Xepsin is apparently formed within the epidermis. In contrast, Xepsin expression was observed throughout the epidermis in LiCl-treated dorsalized embryos (DAI 10), as seen from an expression pattern indistinguishable from that of type I keratin. These data suggest that posteriorizing signals which suppress the transcription of Xepsin are present in nonaxial regions and absent in the anterior dorsal mesoderm. That posteriorizing signals were present in nonaxial regions was also supported by a conjugation experiment in which Xepsin expression was suppressed in ectodermal explants conjugated with lateral or ventral marginal zone. Moreover, the partly suppressed expression of Xepsin in the epidermal region of exogastrulae indicates that the signals may travel horizontally within the plane of the epidermis. We also present data showing that both treatment with retinoic acid and the overexpression of a constitutively active form of a retinoic acid receptor caused the suppression of Xepsin mRNA transcription, suggesting that anterior-posterior patterning in the central nervous system and in the epidermis may share common endogenous factors, i.e. , retinoids, in the Xenopus embryo.  (+info)