Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. (1/3001)

Acutely dissociated cell bodies of mouse Purkinje neurons spontaneously fired action potentials at approximately 50 Hz (25 degrees C). To directly measure the ionic currents underlying spontaneous activity, we voltage-clamped the cells using prerecorded spontaneous action potentials (spike trains) as voltage commands and used ionic substitution and selective blockers to isolate individual currents. The largest current flowing during the interspike interval was tetrodotoxin-sensitive sodium current (approximately -50 pA between -65 and -60 mV). Although the neurons had large voltage-dependent calcium currents, the net current blocked by cobalt substitution for calcium was outward at all times during spike trains. Thus, the electrical effect of calcium current is apparently dominated by rapidly activated calcium-dependent potassium currents. Under current clamp, all cells continued firing spontaneously (though approximately 30% more slowly) after block of T-type calcium current by mibefradil, and most cells continued to fire after block of all calcium current by cobalt substitution. Although the neurons possessed hyperpolarization-activated cation current (Ih), little current flowed during spike trains, and block by 1 mM cesium had no effect on firing frequency. The outward potassium currents underlying the repolarization of the spikes were completely blocked by 1 mM TEA. These currents deactivated quickly (<1 msec) after each spike. We conclude that the spontaneous firing of Purkinje neuron cell bodies depends mainly on tetrodotoxin-sensitive sodium current flowing between spikes. The high firing rate is promoted by large potassium currents that repolarize the cell rapidly and deactivate quickly, thus preventing strong hyperpolarization and restoring a high input resistance for subsequent depolarization.  (+info)

RINm5f cells express inactivating BK channels whereas HIT cells express noninactivating BK channels. (2/3001)

Large-conductance Ca2+- and voltage-activated BK-type K+ channels are expressed abundantly in normal rat pancreatic islet cells and in the clonal rat insulinoma tumor (RINm5f) and hamster insulinoma tumor (HIT) beta cell lines. Previous work has suggested that the Ca2+ sensitivity of BK channels in RIN cells is substantially less than that in HIT cells, perhaps contributing to differences between the cell lines in responsiveness to glucose in mediating insulin secretion. In both RIN cells and normal pancreatic beta cells, BK channels are thought to play a limited role in responses of beta cells to secretagogues and in the electrical activity of beta cells. Here we examine in detail the properties of BK channels in RIN and HIT cells using inside-out patches and whole cell recordings. BK channels in RIN cells exhibit rapid inactivation that results in an anomalous steady-state Ca2+ dependence of activation. In contrast, BK channels in HIT cells exhibit the more usual noninactivating behavior. When BK inactivation is taken into account, the Ca2+ and voltage dependence of activation of BK channels in RIN and HIT cells is essentially indistinguishable. The properties of BK channel inactivation in RIN cells are similar to those of inactivating BK channels (termed BKi channels) previously identified in rat chromaffin cells. Inactivation involves multiple, trypsin-sensitive cytosolic domains and exhibits a dependence on Ca2+ and voltage that appears to arise from coupling to channel activation. In addition, the rates of inactivation onset and recovery are similar to that of BKi channels in chromaffin cells. The charybdotoxin (CTX) sensitivity of BKi currents is somewhat less than that of the noninactivating BK variant. Action potential voltage-clamp waveforms indicate that BK current is activated only weakly by Ca2+ influx in RIN cells but more strongly activated in HIT cells even when Ca2+ current magnitude is comparable. Concentrations of CTX sufficient to block BKi current in RIN cells have no effect on action potential activity initiated by glucose or DC injection. Despite its abundant expression in RIN cells, BKi current appears to play little role in action potential activity initiated by glucose or DC injection in RIN cells, but BK current may play an important role in action potential repolarization in HIT cells.  (+info)

Characterization of K+ currents underlying pacemaker potentials of fish gonadotropin-releasing hormone cells. (3/3001)

Endogenous pacemaker activities are important for the putative neuromodulator functions of the gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve (TN) cells. We analyzed several types of voltage-dependent K+ currents to investigate the ionic mechanisms underlying the repolarizing phase of pacemaker potentials of TN-GnRH cells by using the whole brain in vitro preparation of fish (dwarf gourami, Colisa lalia). TN-GnRH cells have at least four types of voltage-dependent K+ currents: 1) 4-aminopyridine (4AP)-sensitive K+ current, 2) tetraethylammonium (TEA)-sensitive K+ current, and 3) and 4) two types of TEA- and 4AP-resistant K+ currents. A transient, low-threshold K+ current, which was 4AP sensitive and showed significant steady-state inactivation in the physiological membrane potential range (-40 to -60 mV), was evoked from a holding potential of -100 mV. This current thus cannot contribute to the repolarizing phase of pacemaker potentials. TEA-sensitive K+ current evoked from a holding potential of -100 mV was slowly activating, long lasting, and showed comparatively low threshold of activation. This current was only partially inactivated at steady state of -60 to -40 mV, which is equivalent to the resting membrane potential. TEA- and 4AP-resistant sustained K+ currents were evoked from a holding potential of -100 mV and were suggested to consist of two types, based on the analysis of activation curves. From the inactivation and activation curves, it was suggested that one of them with low threshold of activation may be partly involved in the repolarizing phase of pacemaker potentials. Bath application of TEA together with tetrodotoxin reversibly blocked the pacemaker potentials in current-clamp recordings. We conclude that the TEA-sensitive K+ current is the most likely candidate that contributes to the repolarizing phase of the pacemaker potentials of TN-GnRH cells.  (+info)

Calcium responses induced by acetylcholine in submucosal arterioles of the guinea-pig small intestine. (4/3001)

1. Calcium responses induced by brief stimulation with acetylcholine (ACh) were assessed from the fluorescence changes in fura-2 loaded submucosal arterioles of the guinea-pig small intestine. 2. Initially, 1-1.5 h after loading with fura-2 (fresh tissues), ACh increased [Ca2+]i in a concentration-dependent manner. This response diminished with time, and finally disappeared in 2-3 h (old tissues). 3. Ba2+ elevated [Ca2+]i to a similar extent in both fresh and old tissues. ACh further increased the Ba2+-elevated [Ca2+]i in fresh tissues, but reduced it in old tissues. Responses were not affected by either indomethacin or nitroarginine. 4. In fresh mesenteric arteries, mechanical removal of endothelial cells abolished the ACh-induced increase in [Ca2+]i, with no alteration of [Ca2+]i at rest and during elevation with Ba2+. 5. In the presence of indomethacin and nitroarginine, high-K+ solution elevated [Ca2+]i in both fresh and old tissues. Subsequent addition of ACh further increased [Ca2+]i in fresh tissues without changing it in old tissues. 6. Proadifen, an inhibitor of the enzyme cytochrome P450 mono-oxygenase, inhibited the ACh-induced changes in [Ca2+]i in both fresh and Ba2+-stimulated old tissues. It also inhibited the ACh-induced hyperpolarization. 7. In fresh tissues, the ACh-induced Ca2+ response was not changed by apamin, charybdotoxin (CTX), 4-aminopyridine (4-AP) or glibenclamide. In old tissues in which [Ca2+]i had previously been elevated with Ba2+, the ACh-induced Ca2+ response was inhibited by CTX but not by apamin, 4-AP or glibenclamide. 8. It is concluded that in submucosal arterioles, ACh elevates endothelial [Ca2+]i and reduces muscular [Ca2+]i, probably through the hyperpolarization of endothelial or smooth muscle membrane by activating CTX-sensitive K+ channels.  (+info)

Volume regulation following hypotonic shock in isolated crypts of mouse distal colon. (5/3001)

1. A video-imaging technique of morphometry was used to measure the diameter as an index of cell volume in intact mouse distal colon crypts submitted to hypotonic shock. 2. Transition from isotonic (310 mosmol l-1) to hypotonic (240 mosmol l-1) saline caused a pronounced increase in crypt diameter immediately followed by regulatory volume decrease (RVD). 3. Exposure of crypts to Cl--free hyposmotic medium increased the rapidity of both cell swelling and RVD. Exposure of crypts to Na+-free hyposmotic medium reduced the total duration of swelling. Return to initial diameter was followed by further shrinkage of the crypt cells. 4. The chloride channel inhibitor NPPB (50 microM) delayed the swelling phase and prevented the subsequent normal decrease in diameter. 5. The K+ channel blockers barium (10 mM), charybdotoxin (10 nM) and TEA (5 mM) inhibited RVD by 51, 44 and 32 %, respectively. 6. Intracellular [Ca2+] rose from a baseline of 174 +/- 17 nM (n = 8) to 448 +/- 45 nM (n = 8) during the initial swelling phase 7. The Ca2+ channel blockers verapamil (50 microM) and nifedipine (10 microM), the chelator of intracellular Ca2+ BAPTA AM (30 microM), or the inhibitor of Ca2+ release TMB-8 (10 microM), dramatically reduced volume recovery, leading to 51 % (n = 9), 25 % (n = 7), 37 % (n = 6), 32 % (n = 8) inhibition of RVD, respectively. TFP (50 microM), an antagonist of the Ca2+-calmodulin complex, significantly slowed RVD. The Ca2+ ionophore A23187 (2 microM) provoked a dramatic reduction of the duration and amplitude of cell swelling followed by extensive shrinkage. The release of Ca2+ from intracellular stores using bradykinin (1 microM) or blockade of reabsorption with thapsigargin (1 microM) decreased the duration of RVD. 8. Prostaglandin E2 (PGE2, 5 microM) slightly delayed RVD, whereas leukotriene D4 (LTD4, 100 nM) and arachidonic acid (10 microM) reduced the duration of RVD. Blockade of phospholipase A2 by quinacrine (10 microM) inhibited RVD by 53 %. Common inhibition of PGE2 and LTD4 synthesis by ETYA (50 microM) or separate blockade of PGE2 synthesis by 1 microM indomethacin reduced the duration of RVD. Blockade of LTD4 synthesis by nordihydroguaiaretic acid (NDGA) did not produce any significant effect on cell swelling or subsequent RVD. 9. Staurosporine (1 microM), an inhibitor of protein kinases, inhibited RVD by 58 %. Taken together the experiments demonstrate that the RVD process is under the control of conductive pathways, extra- and intracellular Ca2+ ions, protein kinases, prostaglandins and leukotrienes.  (+info)

Acetylcholine-induced membrane potential changes in endothelial cells of rabbit aortic valve. (6/3001)

1. Using a microelectrode technique, acetylcholine (ACh)-induced membrane potential changes were characterized using various types of inhibitors of K+ and Cl- channels in rabbit aortic valve endothelial cells (RAVEC). 2. ACh produced transient then sustained membrane hyperpolarizations. Withdrawal of ACh evoked a transient depolarization. 3. High K+ blocked and low K+ potentiated the two ACh-induced hyperpolarizations. Charybdotoxin (ChTX) attenuated the ACh-induced transient and sustained hyperpolarizations; apamin inhibited only the sustained hyperpolarization. In the combined presence of ChTX and apamin, ACh produced a depolarization. 4. In Ca2+-free solution or in the presence of Co2+ or Ni2+, ACh produced a transient hyperpolarization followed by a depolarization. In BAPTA-AM-treated cells, ACh produced only a depolarization. 5. A low concentration of A23187 attenuated the ACh-induced transient, but not the sustained, hyperpolarization. In the presence of cyclopiazonic acid, the hyperpolarization induced by ACh was maintained after ACh removal; this maintained hyperpolarization was blocked by Co2+. 6. Both NPPB and hypertonic solution inhibited the membrane depolarization seen after ACh washout. Bumetanide also attenuated this depolarization. 7. It is concluded that in RAVEC, ACh produces a two-component hyperpolarization followed by a depolarization. It is suggested that ACh-induced Ca2+ release from the storage sites causes a transient hyperpolarization due to activation of ChTX-sensitive K+ channels and that ACh-activated Ca2+ influx causes a sustained hyperpolarization by activating both ChTX- and apamin-sensitive K+ channels. Both volume-sensitive Cl- channels and the Na+-K+-Cl- cotransporter probably contribute to the ACh-induced depolarization.  (+info)

Differences in the actions of some blockers of the calcium-activated potassium permeability in mammalian red cells. (7/3001)

1. The actions of some inhibitors of the Ca2+-activated K+ permeability in mammalian red cells have been compared. 2. Block of the permeability was assessed from the reduction in the net loss of K+ that followed the application of the Ca2+ ionophore A23187 (2 microM) to rabbit red cells suspended at a haematocrit of 1% in a low potassium solution ([K]0 0.12-0.17 mM) at 37 degrees C. Net movement of K+ was measured using a K+-sensitive electrode placed in the suspension. 3. The concentrations (microM +/- s.d.) of the compounds tested causing 50% inhibition of K+ loss were: quinine, 37 +/- 3; cetiedil, 26 +/- 1; the cetiedil congeners UCL 1269, UCL 1274 and UCL 1495, approximately 150, 8.2 +/- 0.1, 0.92 +/- 0.03 respectively; clotrimazole, 1.2 +/- 0.1; nitrendipine, 3.6 +/- 0.5 and charybdotoxin, 0.015 +/- 0.002. 4. The characteristics of the block suggested that compounds could be placed in two groups. For one set (quinine, cetiedil, and the UCL congeners), the concentration-inhibition curves were steeper (Hill coefficient, nH, > or = 2.7) than for the other (clotrimazole, nitrendipine, charybdotoxin) for which nH approximately 1. 5. Compounds in the first set alone became less active on raising the concentration of K+ in the external solution to 5.4 mM. 6. The rate of K+ loss induced by A23187 slowed in the presence of high concentrations of cetiedil and its analogues, suggesting a use-dependent component to the inhibitory action. This was not seen with clotrimazole. 7. The blocking action of the cetiedil analogue UCL 1274 could not be overcome by an increase in external Ca2+ and its potency was unaltered when K+ loss was induced by the application of Pb2+ (10 microM) rather than by A23187. 8. These results, taken with the findings of others, suggest that agents that block the red cell Ca2+-activated K+ permeability can be placed in two groups with different mechanisms of action. The differences can be explained by supposing that clotrimazole and charybdotoxin act at the outer face of the channel whereas cetiedil and its congeners may block within it, either at or near the K+ binding site that determines the flow of K+.  (+info)

Modulation of chloride, potassium and bicarbonate transport by muscarinic receptors in a human adenocarcinoma cell line. (8/3001)

1. Short-circuit current (I(SC)) responses to carbachol (CCh) were investigated in Colony 1 epithelia, a subpopulation of the HCA-7 adenocarcinoma cell line. In Krebs-Henseleit (KH) buffer, CCh responses consisted of three I(SC) components: an unusual rapid decrease (the 10 s spike) followed by an upward spike at 30 s and a slower transient increase (the 2 min peak). This response was not potentiated by forskolin; rather, CCh inhibited cyclic AMP-stimulated I(SC). 2. In HCO3- free buffer, the decrease in forskolin-elevated I(SC) after CCh was reduced, although the interactions between CCh and forskolin remained at best additive rather than synergistic. When Cl- anions were replaced by gluconate, both Ca2+- and cyclic AMP-mediated electrogenic responses were significantly inhibited. 3. Basolateral Ba2+ (1-10 mM) and 293B (10 microM) selectively inhibited forskolin stimulation of I(SC), without altering the effects of CCh. Under Ba2+- or 293B-treated conditions, CCh responses were potentiated by pretreatment with forskolin. 4. Basolateral charybdotoxin (50 nM) significantly increased the size of the 10 s spike of CCh responses in both KH and HCO3- free medium, without affecting the 2 min peak. The enhanced 10 s spike was inhibited by prior addition of 5 mM apical Ba2+. Charybdotoxin did not affect forskolin responses. 5. In epithelial layers prestimulated with forskolin, the muscarinic antagonists atropine and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, both at 100 nM) abolished subsequent 10 microM CCh responses. Following addition of p-fluoro hexahydro-sila-difenidol (pF-HHSiD, 10 microM) or pirenzepine (1 microM), qualitative changes in the CCh response time-profile also indicated a rightward shift of the agonist concentration-response curve; however, 1 microM gallamine had no effect. These results suggest that a single M3-like receptor subtype mediates the secretory response to CCh. 6. It is concluded that CCh and forskolin activate discrete populations of basolateral K+ channels gated by either Ca2+ or cyclic AMP, but that the Cl- permeability of the apical membrane may limit their combined effects on electrogenic Cl- secretion. In addition, CCh activates a Ba2+-sensitive apical K+ conductance leading to electrogenic K+ transport. Both agents may also modulate HCO3- secretion through a mechanism at least partially dependent on carbonic anhydrase.  (+info)