Hyperoxia induces the neuronal differentiated phenotype of PC12 cells via a sustained activity of mitogen-activated protein kinase induced by Bcl-2. (1/953)

We previously reported that rat pheochromocytoma PC12 cells express the neuronal differentiated phenotype under hyperoxia through the production of reactive oxygen species (ROS). In the present study, we found that in this phenotype, Bcl-2, an apoptosis inhibitor, affects mitogen-activated protein (MAP)-kinase activity, which is known as a key enzyme of the signal-transduction cascade for differentiation. When PC12 cells were cultured under hyperoxia, a rapid increase in MAP-kinase activity, including that of both p42 and p44, was observed. Although the activity level then decreased quickly, activity higher than the control level was observed for 48 h. PD98059, an inhibitor of MAP kinase, suppressed the hyperoxia-induced neurite extensions, suggesting the involvement of MAP-kinase activity in the mechanism of differentiation induced by ROS. An elevation of Bcl-2 expression was observed after culturing PC12 cells for 24 h under hyperoxia. This Bcl-2 elevation was not affected by treatment with PD98059, suggesting that it did not directly induce neurite extension under hyperoxia. However, the blockade of the Bcl-2 elevation by an antisense oligonucleotide inhibited the sustained MAP-kinase activity and neurite extensions under hyperoxia. Further, in PC12 cells highly expressing Bcl-2, the sustained MAP-kinase activity and neurite extensions under hyperoxia were enhanced. These results suggested that MAP kinase is activated through the production of ROS, and the subsequent elevation of Bcl-2 expression sustains the MAP-kinase activity, resulting in the induction of the neuronal-differentiation phenotype of PC12 cells under hyperoxia.  (+info)

Effect of hyperoxia on human macrophage cytokine response. (2/953)

In the development of lung damage induced by oxidative stress, it has been proposed that changes in alveolar macrophages (AM) function with modifications in cytokine production may contribute to altered repair processes. To characterize the changes in profiles of cytokine production by macrophages exposed to oxidants, the effects of hyperoxia (95% O2) on interleukin (IL)-1 beta, IL-6, IL-8, and tumour necrosis factor-alpha (TNF-alpha) expression were studied. Experiments were first performed using AM obtained from control subjects and children with interstitial lung disease. Results showed that a 48 h O2 exposure was associated with two distinct patterns of response: a decrease in TNF-alpha, IL-1 beta and IL-6 expression, and an increase in IL-8. To complete these observations we used U937 cells that were exposed for various durations to hyperoxia. We confirmed that a 48 h O2 exposure led to similar changes with a decrease in TNF-alpha, IL-1 beta and IL-6 production and an increase in IL-8. Interestingly, this cytokine response was preceded during the first hours of O2 treatment by induction of TNF-alpha, IL-1 beta and IL-6. These data indicate that hyperoxia induces changes in the expression of macrophages inflammatory cytokines, and that these modifications appear to be influenced by the duration of O2 exposure.  (+info)

Exposure to hyperoxia decreases the expression of vascular endothelial growth factor and its receptors in adult rat lungs. (3/953)

Exposure to high levels of inspired oxygen leads to respiratory failure and death in many animal models. Endothelial cell death is an early finding, before the onset of respiratory failure. Vascular endothelial growth factor (VEGF) is highly expressed in the lungs of adult animals. In the present study, adult Sprague-Dawley rats were exposed to >95% FiO2 for 24 or 48 hours. Northern blot analysis revealed a marked reduction in VEGF mRNA abundance by 24 hours, which decreased to less than 50% of control by 48 hours. In situ hybridization revealed that VEGF was highly expressed in distal airway epithelial cells in controls but disappeared in the oxygen-exposed animals. Immunohistochemistry and Western blot analyses demonstrated that VEGF protein was decreased at 48 hours. TUNEL staining demonstrated the presence of apoptotic cells coincident with the decline in VEGF. Abundance of VEGF receptor mRNAs (Flt-1 and KDR/Flk) decreased in the late time points of the study (48 hours), possibly secondary to the loss of endothelial cells. We speculate that VEGF functions as a survival factor in the normal adult rat lung, and its loss during hyperoxia contributes to the pathophysiology of oxygen-induced lung damage.  (+info)

Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. (4/953)

Heme oxygenase-1 (HO-1) confers protection against a variety of oxidant-induced cell and tissue injury. In this study, we examined whether exogenous administration of HO-1 by gene transfer could also confer protection. We first demonstrated the feasibility of overexpressing HO-1 in the lung by gene transfer. A fragment of the rat HO-1 cDNA clone containing the entire coding region was cloned into plasmid pAC-CMVpLpA, and recombinant adenoviruses containing the rat HO-1 cDNA fragment Ad5-HO-1 were generated by homologous recombination. Intratracheal administration of Ad5-HO-1 resulted in a time-dependent increase in expression of HO-1 mRNA and protein in the rat lungs. Increased HO-1 protein expression was detected diffusely in the bronchiolar epithelium of rats receiving Ad5-HO-1, as assessed by immunohistochemical studies. We then examined whether ectopic expression of HO-1 could confer protection against hyperoxia-induced lung injury. Rats receiving Ad5-HO-1, but not AdV-betaGal, a recombinant adenovirus expressing Escherichia coli beta-galactosidase, before exposure to hyperoxia (>99% O2) exhibited marked reduction in lung injury, as assessed by volume of pleural effusion and histological analyses (significant reduction of edema, hemorrhage, and inflammation). In addition, rats receiving Ad5-HO-1 also exhibited increased survivability against hyperoxic stress when compared with rats receiving AdV-betaGal. Expression of the antioxidant enzymes manganese superoxide dismutase (Mn-SOD) and copper-zinc superoxide dismutase (CuZn-SOD) and of L-ferritin and H-ferritin was not affected by Ad5-HO-1 administration. Furthermore, rats treated with Ad5-HO-1 exhibited attenuation of hyperoxia-induced neutrophil inflammation and apoptosis. Taken together, these data suggest the feasibility of high-level HO-1 expression in the rat lung by gene delivery. To our knowledge, we have demonstrated for the first time that HO-1 can provide protection against hyperoxia-induced lung injury in vivo by modulation of neutrophil inflammation and lung apoptosis.  (+info)

Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. (5/953)

Extracellular superoxide dismutase (EC-SOD, or SOD3) is the major extracellular antioxidant enzyme in the lung. To study the biologic role of EC-SOD in hyperoxic-induced pulmonary disease, we created transgenic (Tg) mice that specifically target overexpression of human EC-SOD (hEC-SOD) to alveolar type II and nonciliated bronchial epithelial cells. Mice heterozygous for the hEC-SOD transgene showed threefold higher EC-SOD levels in the lung compared with wild-type (Wt) littermate controls. A significant amount of hEC-SOD was present in the epithelial lining fluid layer. Both Tg and Wt mice were exposed to normobaric hyperoxia (>99% oxygen) for 48, 72, and 84 hours. Mice overexpressing hEC-SOD in the airways attenuated the hyperoxic lung injury response, showed decreased morphologic evidence of lung damage, had reduced numbers of recruited inflammatory cells, and had a reduced lung wet/dry ratio. To evaluate whether reduced numbers of neutrophil infiltration were directly responsible for the tolerance to oxygen toxicity observed in the Tg mice, we made Wt and Tg mice neutropenic using anti-neutrophil antibodies and subsequently exposed them to 72 hours of hyperoxia. Both Wt and Tg neutrophil-depleted (ND) mice have less severe lung injury compared with non-ND animals, thus providing direct evidence that neutrophils recruited to the lung during hyperoxia play a distinct role in the resultant acute lung injury. We conclude that oxidative and inflammatory processes in the extracellular lung compartment contribute to hyperoxic-induced lung damage and that overexpression of hEC-SOD mediates a protective response to hyperoxia, at least in part, by attenuating the neutrophil inflammatory response.  (+info)

Carbon monoxide provides protection against hyperoxic lung injury. (6/953)

Findings in recent years strongly suggest that the stress-inducible gene heme oxygenase (HO)-1 plays an important role in protection against oxidative stress. Although the mechanism(s) by which this protection occurs is poorly understood, we hypothesized that the gaseous molecule carbon monoxide (CO), a major by-product of heme catalysis by HO-1, may provide protection against oxidative stress. We demonstrate here that animals exposed to a low concentration of CO exhibit a marked tolerance to lethal concentrations of hyperoxia in vivo. This increased survival was associated with highly significant attenuation of hyperoxia-induced lung injury as assessed by the volume of pleural effusion, protein accumulation in the airways, and histological analysis. The lungs were completely devoid of lung airway and parenchymal inflammation, fibrin deposition, and pulmonary edema in rats exposed to hyperoxia in the presence of a low concentration of CO. Furthermore, exogenous CO completely protected against hyperoxia-induced lung injury in rats in which endogenous HO enzyme activity was inhibited with tin protoporphyrin, a selective inhibitor of HO. Rats exposed to CO also exhibited a marked attenuation of hyperoxia-induced neutrophil infiltration into the airways and total lung apoptotic index. Taken together, our data demonstrate, for the first time, that CO can be therapeutic against oxidative stress such as hyperoxia and highlight possible mechanism(s) by which CO may mediate these protective effects.  (+info)

Peripheral chemoreceptor function after carbonic anhydrase inhibition during moderate-intensity exercise. (7/953)

The effect of carbonic anhydrase inhibition with acetazolamide (Acz, 10 mg/kg) on the ventilatory response to an abrupt switch into hyperoxia (end-tidal PO2 = 450 Torr) and hypoxia (end-tidal PO2 = 50 Torr) was examined in five male subjects [30 +/- 3 (SE) yr]. Subjects exercised at a work rate chosen to elicit an O2 uptake equivalent to 80% of the ventilatory threshold. Ventilation (VE) was measured breath by breath. Arterial oxyhemoglobin saturation (%SaO2) was determined by ear oximetry. After the switch into hyperoxia, VE remained unchanged from the steady-state exercise prehyperoxic value (60.6 +/- 6.5 l/min) during Acz. During control studies (Con), VE decreased from the prehyperoxic value (52.4 +/- 5.5 l/min) by approximately 20% (VE nadir = 42.4 +/- 6.3 l/min) within 20 s after the switch into hyperoxia. VE increased during Acz and Con after the switch into hypoxia; the hypoxic ventilatory response was significantly lower after Acz compared with Con [Acz, change (Delta) in VE/DeltaSaO2 = 1.54 +/- 0.10 l. min-1. SaO2-1; Con, DeltaVE/DeltaSaO2 = 2.22 +/- 0.28 l. min-1. SaO2-1]. The peripheral chemoreceptor contribution to the ventilatory drive after acute Acz-induced carbonic anhydrase inhibition is not apparent in the steady state of moderate-intensity exercise. However, Acz administration did not completely attenuate the peripheral chemoreceptor response to hypoxia.  (+info)

Correlation of VEGF expression by leukocytes with the growth and regression of blood vessels in the rat cornea. (8/953)

PURPOSE: To determine the temporal and spatial relationships between neovascularization and basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) mRNA and protein expression in the rat cornea after cautery with silver nitrate. METHODS: In female Sprague-Dawley rats, a silver nitrate applicator was placed on the central cornea to elicit circumferential angiogenesis, and blood vessel growth was quantified by digital image analysis of corneal flat-mounts. Total RNA or protein was extracted from whole corneas until 1 week after cautery, and bFGF and VEGF mRNA and protein levels were determined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). To localize VEGF mRNA and protein, paraformaldehyde-fixed and paraffin-embedded histologic cross sections of corneas were examined by in situ hybridization and immunohistochemistry. Macrophages were identified by ED2 immunohistochemistry. To examine the regulation of VEGF, rats were treated with dexamethasone (0.5 mg/kg per day) and hyperoxia (70% O2). RESULTS: The neovascular response progresses in three phases: (1) a nonproliferative phase preceding vessel growth (< or = 48 hours after cautery); (2) a proliferative phase with maximal growth rate between 3 and 4 days; and (3) a regressive phase (day 7) with a decrease in vessel density accompanying the completion of vessel elongation. In corneas after cautery, bFGF mRNA expression was unchanged, and bFGF protein concentration decreaseed by 97% after 24 hours and returned to control levels by day 7. In contrast, VEGF164 and VEGF188 mRNA splice variants and protein peaked 48 hours after cautery, remained elevated 4 days after cautery, and decreased to near baseline by day 7. The peak concentration of VEGF in the cornea at 48 hours was calculated to be 720 pM, which is sufficient to evoke a functional response. In situ hybridization and immunohistochemistry showed VEGF expressed initially in neutrophils (24 - 48 hours) and subsequently in macrophages (4 days) adjacent to the cautery site. Treatment with either dexamethasone or systemic hyperoxia inhibited both neovascularization and the increase in VEGF expression. Dexamethasone inhibited 27% of cautery-induced VEGF upregulation at 24 hours and 23% at 48 hours, hyperoxia inhibited 32% at 24 hours and 43% at 48 hours, and combined treatment with both dexamethasone and hyperoxia had an additive effect (56% inhibition at 24 hours). CONCLUSIONS: VEGF production by leukocytes correlates temporally and spatially with cautery-induced angiogenesis in the rat cornea. Both inflammatory products and hypoxia appear to sufficiently increase VEGF expression near the cautery lesion to increase vascular permeability of limbal vessels and induce endothelial cell migration and proliferation.  (+info)