Microsatellite instability in Drosophila spellchecker1 (MutS homolog) mutants. (41/18435)

We have cloned a mutS homolog from Drosophila melanogaster called spellchecker1 (spel1) and have constructed spel1 mutant flies. MutS proteins promote the correction of DNA mismatches and serve important roles in DNA replication, recombination, and repair. The spel1 gene belongs to a subfamily of mutS first characterized by the MSH2 gene of yeast and which also includes hMSH2, one of the two major hereditary nonpolyposis colon cancer loci of humans. Like msh2 mutants in other species, we find that flies lacking the spel1 gene suffer a highly increased rate of instability in long runs of dinucleotide repeats when analyzed after 10-12 fly generations. Using a new assay, we have also discovered that mutations in spel1 decrease the stability of a dinucleotide repeat when it is copied into the site of a double-strand break during gene conversion. Contrary to the case in mammalian cells, spel1 deficiency does not affect tolerance of flies to a methylating agent nor does it affect resistance to gamma-irradiation.  (+info)

Structure and promoter activity of an islet-specific glucose-6-phosphatase catalytic subunit-related gene. (42/18435)

In liver and kidney, the terminal step in the gluconeogenic pathway is catalyzed by glucose-6-phosphatase (G-6-Pase). This enzyme is actually a multicomponent system, the catalytic subunit of which was recently cloned. Numerous reports have also described the presence of G-6-Pase activity in islets, although the role of G-6-Pase in this tissue is unclear. Arden and associates have described the cloning of a novel cDNA that encodes an islet-specific G-6-Pase catalytic subunit-related protein (IGRP) (Arden SD, Zahn T, Steegers S, Webb S, Bergman B, O'Brien RM, Hutton JC: Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP). Diabetes 48:531-542, 1999). We screened a mouse BAC library with this cDNA to isolate the IGRP gene, which spans approximately 8 kbp of genomic DNA. The exon/intron structure of the IGRP gene has been mapped and, as with the gene encoding the liver/kidney G-6-Pase catalytic subunit, it is composed of five exons. The sizes of these exons are 254 (I), 110 (II), 112 (III), 116 (IV), and 1284 (V) bp, similar to those of the G-6-Pase catalytic subunit gene. Two interspecific backcross DNA mapping panels were used to unambiguously localize the IGRP gene (map symbol G6pc-rs) to the proximal portion of mouse chromosome 2. The IGRP gene transcription start site was mapped by primer extension analysis, and the activity of the IGRP gene promoter was analyzed in both the islet-derived HIT cell line and the liver-derived HepG2 cell line. The IGRP and G-6-Pase catalytic subunit gene promoters show a reciprocal pattern of activity, with the IGRP promoter being approximately 150-fold more active than the G-6-Pase promoter in HIT cells.  (+info)

PU.1 and USF are required for macrophage-specific mannose receptor promoter activity. (43/18435)

In the current study we report the isolation of 854 base pairs of the rat mannose receptor promoter. Analysis of the sequence revealed one Sp1 site, three PU.1 sites, and a potential TATA box (TTTAAA) 33 base pairs 5' of the transcriptional start site. The tissue specificity of the promoter was determined using transient transfections. The promoter was most active in the mature macrophage cell line NR8383 although the promoter also showed activity in the monocytic cell line RAW. No activity was observed in pre-monocytic cell lines or epithelial cell lines. Mutation of the TTTAAA sequence to TTGGAA resulted in a 50% decrease in activity in transient transfection assays suggesting that the promoter contains a functional TATA box. Using electrophoretic mobility shift assays and mutagenesis we established that the transcription factors Sp1, PU.1, and USF bound to the mannose receptor promoter, but only PU.1 and USF contributed to activation. Transient transfections using a dominant negative construct of USF resulted in a 50% decrease in mannose receptor promoter activity, further establishing the role of USF in activating the rat mannose receptor promoter. Comparison of the rat, mouse, and human sequence demonstrated that some binding sites are not conserved. Gel shifts were performed to investigate differences in protein binding between species. USF bound to the rat and human promoter but not to the mouse promoter, suggesting that different mechanisms are involved in regulation of mannose receptor expression in these species. From these results we conclude that, similar to other myeloid promoters, transcription of the rat mannose receptor is regulated by binding of PU.1 and a ubiquitous factor at an adjacent site. However, unlike other myeloid promoters, we have identified USF as the ubiquitous factor, and demonstrated that the promoter contains a functional TATA box.  (+info)

Human cts18.1 gene: chromosomal localization and PH-domain analysis. (44/18435)

The human cts18.1 gene has high homology with the cytohesin gene family. By PCR analysis of a human monochromosomal somatic cell hybrid DNA panel, the cts18.1 gene was localized to chromosome 19. Diversity values of synonymous and nonsynonymous substitutions indicate that negative selection has occurred in the pleckstrin-homology (PH) domain of the cytohesin gene family. The phylogenetic tree calculated by the neighbor-joining method suggests that cts18.1 and cytohesin-2 genes are more closely related to each other than either of them is to the CLM-2 gene in the analysis of cDNA of the PH domain.  (+info)

Subfamily divergence in the multigene family of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS) in Triticeae and its relatives. (45/18435)

To investigate genetic mechanisms acting on multigene family in plants, we analyzed sequence variation in the rbcS gene of 13 species of Triticeae and one species each of related tribes (Bromeae and Aveneae). A total of 36 rbcS genes were analyzed. Based on dimorphism in the length of intron, the rbcSs of investigated species were classified into two subfamilies A and B. The difference in intron length was caused by an indel of about 200 bp in the middle of the intron. The two subfamilies of rbcS were present in the three tribes, indicating that the divergence of rbcS subfamilies occurred before the split of these tribes. Generally, variation between the two subfamilies of rbcS was larger than that within subfamily, but these two measures were about the same at the tribe level. This result suggested that divergence of the subfamilies of rbcS occurred at about the same time of tribe diversification. The level of nucleotide variation in the exon region between subfamilies was reduced in the Triticeae, but clear change was not detected in the intron sequence. This result suggested that the exon sequences between subfamilies of rbcS were homogenized without affecting the intron sequence in the Triticeae lineage.  (+info)

Nucleotide changes in mitochondrial 16S rRNA gene from different mammalian cell lines. (46/18435)

The partial nucleotide sequences of mitochondrial 16S rRNA gene were analyzed in five rodent cell lines, prior to the analysis of mutation spectrum in the gene. Total DNA was isolated from V79 and CHO-K1 cell lines from Chinese hamster and murine cell lines, Balb Y SV and PCC4 AG Cap, and the 3' terminal regions including the peptidyl transferase domain which is the target for chloramphenicol, a selective inhibitor of mitochondrial protein synthesis, were amplified by polymerase chain reaction (PCR) using two sets of primers and directly sequenced. In Chinese hamster cells, C to T transition at one site was observed in CHO-K1, and either A was deleted at the sequence of AA in all three cell lines, relative to the V79-cell sequence registered in GenBank. One G to A transition mutation in heteroplasmic state was observed in mouse PCC4 AG Cap cells which have chloramphenicol resistant phenotype, whereas there was no change in the Balb Y SV cell line, relative to the L-cell sequence. These mutation sites were located outside the peptidyl transferase domain.  (+info)

Characterization of human MMTV-like (HML) elements similar to a sequence that was highly expressed in a human breast cancer: further definition of the HML-6 group. (47/18435)

Previously, we found a retroviral sequence, HML-6.2BC1, to be expressed at high levels in a multifocal ductal breast cancer from a 41-year-old woman who also developed ovarian carcinoma. The sequence of a human genomic clone (HML-6.28) selected by high-stringency hybridization with HML-6.2BC1 is reported here. It was 99% identical to HML-6.2BC1 and gave the same restriction fragments as total DNA. HML-6.28 is a 4.7-kb provirus with a 5'LTR, truncated in RT. Data from two similar genomic clones and sequences found in GenBank are also reported. Overlaps between them gave a rather complete picture of the HML-6.2BC1-like human endogenous retroviral elements. Work with somatic cell hybrids and FISH localized HML-6.28 to chromosome 6, band p21, close to the MHC region. The causal role of HML-6.28 in breast cancer remains unclear. Nevertheless, the ca. 20 Myr old HML-6 sequences enabled the definition of common and unique features of type A, B, and D (ABD) retroviruses. In Gag, HML-6 has no intervening sequences between matrix and capsid proteins, unlike extant exogenous ABD viruses, possibly an ancestral feature. Alignment of the dUTPase showed it to be present in all ABD viruses, but gave a phylogenetic tree different from trees made from other ABD genes, indicating a distinct phylogeny of dUTPase. A conserved 24-mer sequence in the amino terminus of some ABD envelope genes suggested a conserved function.  (+info)

Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. (48/18435)

Velo-cardio-facial syndrome (VCFS) is the most common microdeletion syndrome in humans. It occurs with an estimated frequency of 1 in 4, 000 live births. Most cases occur sporadically, indicating that the deletion is recurrent in the population. More than 90% of patients with VCFS and a 22q11 deletion have a similar 3-Mb hemizygous deletion, suggesting that sequences at the breakpoints confer susceptibility to rearrangements. To define the region containing the chromosome breakpoints, we constructed an 8-kb-resolution physical map. We identified a low-copy repeat in the vicinity of both breakpoints. A set of genetic markers were integrated into the physical map to determine whether the deletions occur within the repeat. Haplotype analysis with genetic markers that flank the repeats showed that most patients with VCFS had deletion breakpoints in the repeat. Within the repeat is a 200-kb duplication of sequences, including a tandem repeat of genes/pseudogenes, surrounding the breakpoints. The genes in the repeat are GGT, BCRL, V7-rel, POM121-like, and GGT-rel. Physical mapping and genomic fingerprint analysis showed that the repeats are virtually identical in the 200-kb region, suggesting that the deletion is mediated by homologous recombination. Examination of two three-generation families showed that meiotic intrachromosomal recombination mediated the deletion.  (+info)