Interactions between red light, abscisic acid, and calcium in gravitropism. (41/304)

The effect of red light on orthogravitropism of Merit corn (Zea mays L.) roots has been attributed to its effects on the transduction phase of gravitropism (AC Leopold, SH Wettlaufer [1988] Plant Physiol 87:803-805). In an effort to characterize the orthogravitropic transduction system, comparative experiments have been carried out on the effects of red light, calcium, and abscisic acid (ABA). The red light effect can be completely satisfied with added ABA (100 micromolar) or with osmotic shock, which is presumed to increase endogenous ABA. The decay of the red light effect is closely paralleled by the decay of the ABA effect. ABA and exogenous calcium show strong additive effects when applied to either Merit or a line of corn which does not require red light for orthogravitropism. Measurements of the ABA content show marked increases in endogenous ABA in the growing region of the roots after red light. The interpretation is offered that red light or ABA may serve to increase the cytoplasmic concentrations of calcium, and that this may be an integral part of orthogravitropic transduction.  (+info)

Influence of hook position on phototropic and gravitropic curvature by etiolated hypocotyls of Arabidopsis thaliana. (42/304)

Phototropic and gravitropic curvature by hypocotyls of Arabidopsis thaliana is minimal when the side of the hook with the cotyledons attached is positioned toward the direction of tropistic curvature, and maximal when that side of the hook is positioned away from the direction of tropistic curvature. Based on these data, it is proposed that the position of the hook with attached cotyledons affects curvature and not stimulus perception. A randomly oriented population of plants exhibited considerable heterogeneity in tropistic curvature. This heterogeneity arises at least in part from the dependence of curvature on the position of the hook.  (+info)

Springback in root gravitropism. (43/304)

Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.  (+info)

Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls. (44/304)

Although the Cholodny-Went model of auxin redistribution has been used to explain the transduction phase of gravitropism for over 60 years, problems are apparent, especially with dicot stems. An alternative to an auxin gradient is a physiological gradient in which lower tissues of a horizontal stem become more sensitive than upper tissues to auxin already present. Changes in tissue sensitivity to auxin were tested by immersing marked Glycine max Merrill (soybean) hypocotyl sections in buffered auxin solutions (0, 10(-8) to 10(-2) molar indoleacetic acid) and observing bending and growth of upper and lower surfaces. The two surfaces of horizontal hypocotyl sections responded differently to the same applied auxin stimulus; hypocotyls bent up (lower half grew more) in buffer alone or in low auxin levels, but bent down (upper half grew more) in high auxin. Dose-response curves were evaluated with Michaelis-Menten kinetics, with auxin-receptor binding analogous to enzyme-substrate binding. Vmax for the lower half was usually greater than that for the upper half, which could indicate more binding sites in the lower half. Km of the upper half was always greater than that of the lower half (unmeasurably low), which could indicate that upper-half binding sites had a much lower affinity for auxin than lower-half sites. Dose-response curves were also obtained for sections scrubbed' (cuticle abraded) on top or bottom before immersion in auxin, and gravitropic memory' experiments of L. Brauner and A. Hagar (1958 Planta 51: 115-147) were duplicated. [1-14C]Indoleacetic acid penetration was equal into the two halves, and endogenous plus exogenously supplied (not radiolabeled) free auxin in the two halves (by gas chromatography-selected ion monitoring-mass spectrometry) was also equal. Thus, differential growth occurred without free auxin redistribution, contrary to Cholodny-Went but in agreement with a sensitivity model.  (+info)

Effect of asymmetric auxin application on Helianthus hypocotyl curvature. (45/304)

Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution.  (+info)

Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response. (46/304)

Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive' phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.  (+info)

Localization and pattern of graviresponse across the pulvinus of barley Hordeum vulgare. (47/304)

Pulvini of excised stem segments from barley (Hordeum vulgare cv Larker') were pretreated with 1 millimolar coumarin before gravistimulation to reduce longitudinal cell expansion and exaggerate radial cell enlargement. The cellular localization and pattern of graviresponse across individual pulvini were then evaluated by cutting the organ in cross-section, photographing the cross-section, and then measuring pulvinus thickness and the radial width of cortical and epidermal cells in enlargements of the photomicrographs. With respect to orientation during gravistimulation, we designated the uppermost point of the cross-section 0 degrees and the lowermost point 180 degrees. A gravity-induced increase in pulvinus thickness was observable within 40 degrees of the vertical in coumarin-treated pulvini. In upper halves of coumarin-treated gravistimulated pulvini, cells in the inner cortex and inner epidermis had increased radial widths, relative to untreated gravistimulated pulvini. In lower halves of coumarin-treated pulvini, cells in the central and outer cortex and in the outer epidermis showed the greatest increase in radial width. Cells comprising the vascular bundles also increased in radial width, with this pattern following that of the central cortex. These results indicate (a) that all cell types are capable of showing a graviresponse, (b) that the graviresponse occurs in both the top and the bottom of the responding organ, and (c) that the magnitude of the response increases approximately linearly from the uppermost point to the lowermost. These results are also consistent with models of gravitropism that link the pattern and magnitude of the graviresponse to graviperception via statolith sedimentation.  (+info)

Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. (48/304)

We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.  (+info)