Cancer genetics: tumor suppressor meets oncogene. (1/855)

The adenomatous polyposis coli (APC) tumor suppressor protein is inactivated by mutations in the majority of colorectal cancers. A recent study has revealed that alterations in the APC signaling pathway can result in the transcriptional activation of the c-MYC gene.  (+info)

Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. (2/855)

The adenomatous polyposis coli (APC) tumour-suppressor protein controls the Wnt signalling pathway by forming a complex with glycogen synthase kinase 3beta (GSK-3beta), axin/conductin and betacatenin. Complex formation induces the rapid degradation of betacatenin. In colon carcinoma cells, loss of APC leads to the accumulation of betacatenin in the nucleus, where it binds to and activates the Tcf-4 transcription factor (reviewed in [1] [2]). Here, we report the identification and genomic structure of APC homologues. Mammalian APC2, which closely resembles APC in overall domain structure, was functionally analyzed and shown to contain two SAMP domains, both of which are required for binding to conductin. Like APC, APC2 regulates the formation of active betacatenin-Tcf complexes, as demonstrated using transient transcriptional activation assays in APC -/- colon carcinoma cells. Human APC2 maps to chromosome 19p13.3. APC and APC2 may therefore have comparable functions in development and cancer.  (+info)

Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. (3/855)

Overexpression of cell surface glycoproteins of the CD44 family is an early event in the colorectal adenoma-carcinoma sequence. This suggests a link with disruption of APC tumor suppressor protein-mediated regulation of beta-catenin/Tcf-4 signaling, which is crucial in initiating tumorigenesis. To explore this hypothesis, we analyzed CD44 expression in the intestinal mucosa of mice and humans with genetic defects in either APC or Tcf-4, leading to constitutive activation or blockade of the beta-catenin/Tcf-4 pathway, respectively. We show that CD44 expression in the non-neoplastic intestinal mucosa of Apc mutant mice is confined to the crypt epithelium but that CD44 is strongly overexpressed in adenomas as well as in invasive carcinomas. This overexpression includes the standard part of the CD44 (CD44s) as well as variant exons (CD44v). Interestingly, deregulated CD44 expression is already present in aberrant crypt foci with dysplasia (ACFs), the earliest detectable lesions of colorectal neoplasia. Like ACFs of Apc-mutant mice, ACFs of familial adenomatous polyposis (FAP) patients also overexpress CD44. In sharp contrast, Tcf-4 mutant mice show a complete absence of CD44 in the epithelium of the small intestine. This loss of CD44 concurs with loss of stem cell characteristics, shared with adenoma cells. Our results indicate that CD44 expression is part of a genetic program controlled by the beta-catenin/Tcf-4 signaling pathway and suggest a role for CD44 in the generation and turnover of epithelial cells.  (+info)

Analysis of masked mutations in familial adenomatous polyposis. (4/855)

Familial adenomatous polyposis (FAP) is an autosomal-dominant disease characterized by the development of hundreds of adenomatous polyps of the colorectum. Approximately 80% of FAP patients can be shown to have truncating mutations of the APC gene. To determine the cause of FAP in the other 20% of patients, MAMA (monoallelic mutation analysis) was used to independently examine the status of each of the two APC alleles. Seven of nine patients analyzed were found to have significantly reduced expression from one of their two alleles whereas two patients were found to have full-length expression from both alleles. We conclude that more than 95% of patients with FAP have inactivating mutations in APC and that a combination of MAMA and standard genetic tests will identify APC abnormalities in the vast majority of such patients. That no APC expression from the mutant allele is found in some FAP patients argues strongly against the requirement for dominant negative effects of APC mutations. The results also suggest that there may be at least one additional gene, besides APC, that can give rise to FAP.  (+info)

A possible contributory role of BK virus infection in neuroblastoma development. (5/855)

The tumor suppressor protein p53 is aberrantly localized to the cytoplasm of neuroblastoma cells, compromising the suppressor function of this protein. Such tumors are experimentally induced in transgenic mice expressing the large tumor (T) antigen of polyomaviruses. The oncogenic mechanisms of T antigen include complex formation with, and inactivation of, the tumor suppressor protein p53. Samples from 18 human neuroblastomas and five normal human adrenal glands were examined. BK virus DNA was detected in all neuroblastomas and none of five normal adrenal glands by PCR. Using DNA in situ hybridization, polyomaviral DNA was found in the tumor cells of 17 of 18 neuroblastomas, but in none of five adrenal medullas. Expression of the large T antigen was detected in the tumor cells of 16 of 18 neuroblastomas, but in none of the five adrenal medullas. By double immunostaining BK virus T antigen and p53 was colocalized to the cytoplasm of the tumor cells. Immunoprecipitation revealed binding between the two proteins. The presence and expression of BK virus in neuroblastomas, but not in normal adrenal medulla, and colocalization and binding to p53, suggest that this virus may play a contributory role in the development of this neoplasm.  (+info)

Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice. (6/855)

An3 1 KAL I MutL homologue 1 (MLH1) is a member of the family of proteins required for DNA mismatch repair. Germ-line mutations in MLH1 lead to the cancer susceptibility syndrome hereditary nonpolyposis colorectal cancer (HNPCC). We generated mice carrying a null mutation in the Mlh1 gene. We showed that mice heterozygous and homozygous for the Mlh1 gene are predisposed to developing tumors of the gastrointestinal (GI) tract, lymphomas, and a number of other tumor types. We also examined the role of adenomatous polyposis coli gene (Apc) gene mutations in the GI tumors of Mlh1 mutant mice by different methods and showed that the GI tumors in Mlh1 mice express little or no adenomatous polyposis coli protein. When an Apc gene mutation was bred into the Mlh1 mutant mice, the GI tumor incidence increased 40-100-fold. The wild-type Apc allele in these tumors was found to contain mutations. Together, these results show that we have developed two mouse models for human HNPCC and that the mechanisms of tumor development in the GI tract of these mice involve loss of Apc gene function in a manner very similar to that seen in the GI tumors of HNPCC.  (+info)

Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. (7/855)

Loss of serine or threonine phosphorylation sites from exon 3 of beta-catenin has been identified in approximately half of colorectal tumors which lack adenomatous polyposis coli (APC) mutations, but the overall contribution of beta-catenin mutations to sporadic colorectal tumorigenesis is unclear. We therefore used PCR to amplify and sequence exon 3 of beta-catenin from 202 sporadic colorectal tumors. Exon 3 beta-catenin mutations were identified in 6 of 48 small (< 1 cm) adenomas, 2 of 82 large (> or =1 cm) adenomas, and 1 of 72 invasive carcinomas. Eight of the nine mutations, including all of those in the small adenomas and the invasive cancer, involved loss of serine or threonine phosphorylation sites. The percentage of beta-catenin mutations in small adenomas (12.5%) was significantly greater than that in large adenomas (2.4%) and invasive cancers (1.4%; P = 0.05 and P = 0.02, respectively). We conclude that mutation of beta-catenin can be an early, perhaps initiating, event in colorectal tumorigenesis. Small adenomas with beta-catenin mutations do not appear to be as likely to progress to larger adenomas and invasive carcinomas as other adenomas, however, with the result that beta-catenin mutations are only rarely seen in invasive cancers. This suggests that APC and beta-catenin mutations are not functionally equivalent, and that the APC gene may have other tumor suppressor functions besides the degradation of beta-catenin.  (+info)

Cost comparison of predictive genetic testing versus conventional clinical screening for familial adenomatous polyposis. (8/855)

BACKGROUND: Mutations of the APC gene cause familial adenomatous polyposis (FAP), a hereditary colorectal cancer predisposition syndrome. AIMS: To conduct a cost comparison analysis of predictive genetic testing versus conventional clinical screening for individuals at risk of inheriting FAP, using the perspective of a third party payer. METHODS: All direct health care costs for both screening strategies were measured according to time and motion, and the expected costs evaluated using a decision analysis model. RESULTS: The baseline analysis predicted that screening a prototype FAP family would cost $4975/ pound3109 by molecular testing and $8031/ pound5019 by clinical screening strategy, when family members were monitored with the same frequency of clinical surveillance (every two to three years). Sensitivity analyses revealed that the genetic testing approach is cost saving for key variables including the kindred size, the age of screening onset, and the cost of mutation identification in a proband. However, if the APC mutation carriers were monitored at an increased (annual) frequency, the cost of the genetic screening strategy increased to $7483/ pound4677 and was especially sensitive to variability in age of onset of screening, family size, and cost of genetic testing of at risk relatives. CONCLUSIONS: In FAP kindreds, a predictive genetic testing strategy costs less than conventional clinical screening, provided that the frequency of surveillance is identical using either strategy. An additional significant benefit is the elimination of unnecessary colonic examinations for those family members found to be non-carriers.  (+info)