Modulation of the channel activity of the epsilon2/zeta1-subtype N-methyl D-aspartate receptor by PSD-95. (1/610)

A channel-associated protein PSD-95 has been shown to induce clustering of N-methyl D-aspartate (NMDA) receptors, interacting with the COOH terminus of the epsilon subunit of the receptors. The effects of PSD-95 on the channel activity of the epsilon2/zeta1 heteromeric NMDA receptor were examined by injection of PSD-95 cRNA into Xenopus oocytes expressing the NMDA receptors. Expression of PSD-95 decreased the sensitivity of the NMDA receptor channels to L-glutamate. Mutational studies showed that the interaction between the COOH terminus of the epsilon2 subunit of the NMDA receptor and the second PSD-95/Dlg/Z0-1 domain of PSD-95 is critical for the decrease in glutamate sensitivity. It is known that protein kinase C markedly potentiates the channel activity of the NMDA receptor expressed in oocytes. PSD-95 inhibited the protein kinase C-mediated potentiation of the channels. Thus, we demonstrated that PSD-95 functionally modulates the channel activity of the epsilon2/zeta1 NMDA receptor. PSD-95 makes signal transmission more efficient by clustering the channels at postsynaptic sites. In addition to this, our results suggest that PSD-95 plays a protective role against neuronal excitotoxicity by decreasing the glutamate sensitivity of the channels and by inhibiting the protein kinase C-mediated potentiation of the channels.  (+info)

Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. (2/610)

During synaptic development, proteins aggregate at specialized pre- and postsynaptic structures. Mechanisms that mediate protein clustering at these sites remain unknown. To investigate this process, we analyzed synaptic targeting of a postsynaptic density protein, PSD-95, by expressing green fluorescent protein- (GFP-) tagged PSD-95 in cultured hippocampal neurons. We find that postsynaptic clustering relies on three elements of PSD-95: N-terminal palmitoylation, the first two PDZ domains, and a C-terminal targeting motif. In contrast, disruptions of PDZ3, SH3, or guanylate kinase (GK) domains do not affect synaptic targeting. Palmitoylation is sufficient to target the diffusely expressed SAP-97 to synapses, and palmitoylation cannot be replaced with alternative membrane association motifs, suggesting that a specialized synaptic lipid environment mediates postsynaptic clustering. The requirements for PDZ domains and a C-terminal domain of PSD-95 indicate that protein-protein interactions cooperate with lipid interactions in synaptic targeting.  (+info)

MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. (3/610)

Postsynaptic density (PSD)-95/Synapse-associated protein (SAP) 90 and synaptic scaffolding molecule (S-SCAM) are neuronal membrane-associated guanylate kinases. Because PSD-95/SAP90 and S-SCAM function as synaptic scaffolding proteins, identification of ligands for these proteins is important to elucidate the structure of synaptic junctions. Here, we report a novel protein interacting with the PDZ domains of PSD-95/SAP90 and S-SCAM and named it MAGUIN-1 (membrane-associated guanylate kinase-interacting protein-1). MAGUIN-1 has one sterile alpha motif, one PDZ, and one plekstrin homology domain. MAGUIN-1 is localized at the plasma membrane via the plekstrin homology domain and the C-terminal region and interacts with PSD-95/SAP90 and S-SCAM via a C-terminal PDZ domain-binding motif. MAGUIN-1 has a short isoform, MAGUIN-2, which lacks a PDZ domain-binding motif. MAGUINs are expressed in neurons and localized in the cell body and neurites and are coimmunoprecipitated with PSD-95/SAP90 and S-SCAM from rat crude synaptosome. MAGUIN-1 may play an important role with PSD-95/SAP90 and S-SCAM to assemble the components of synaptic junctions.  (+info)

Identification of an intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. (4/610)

Postsynaptic density-95 (PSD-95/SAP-90) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins that assemble protein complexes at synapses and other cell junctions. MAGUKs comprise multiple protein-protein interaction motifs including PDZ, SH3 and guanylate kinase (GK) domains, and these binding sites mediate the scaffolding function of MAGUK proteins. Synaptic binding partners for the PDZ and GK domains of PSD-95 have been identified, but the role of the SH3 domain remains elusive. We now report that the SH3 domain of PSD-95 mediates a specific interaction with the GK domain. The GK domain lacks a poly-proline motif that typically binds to SH3 domains; instead, SH3/GK binding is a bi-domain interaction that requires both intact motifs. Although isolated SH3 and GK domains can bind in trans, experiments with intact PSD-95 molecules indicate that intramolecular SH3/GK binding dominates and prevents intermolecular associations. SH3/GK binding is conserved in the related Drosophila MAGUK protein DLG but is not detectable for Caenorhabditis elegans LIN-2. Many previously identified genetic mutations of MAGUKs in invertebrates occur in the SH3 or GK domains, and all of these mutations disrupt intramolecular SH3/GK binding.  (+info)

Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. (5/610)

The efficiency with which N-methyl-D-aspartate receptors (NMDARs) trigger intracellular signaling pathways governs neuronal plasticity, development, senescence, and disease. In cultured cortical neurons, suppressing the expression of the NMDAR scaffolding protein PSD-95 (postsynaptic density-95) selectively attenuated excitotoxicity triggered via NMDARs, but not by other glutamate or calcium ion (Ca2+) channels. NMDAR function was unaffected, because receptor expression, NMDA currents, and 45Ca2+ loading were unchanged. Suppressing PSD-95 blocked Ca2+-activated nitric oxide production by NMDARs selectively, without affecting neuronal nitric oxide synthase expression or function. Thus, PSD-95 is required for efficient coupling of NMDAR activity to nitric oxide toxicity, and imparts specificity to excitotoxic Ca2+ signaling.  (+info)

Connexin-occludin chimeras containing the ZO-binding domain of occludin localize at MDCK tight junctions and NRK cell contacts. (6/610)

Occludin is a transmembrane protein of the tight junction that functions in creating both an intercellular permeability barrier and an intramembrane diffusion barrier. Creation of the barrier requires the precise localization of occludin, and a distinct family of transmembrane proteins called claudins, into continuous linear fibrils visible by freeze-fracture microscopy. Conflicting evidence exists regarding the relative importance of the transmembrane and extracellular versus the cytoplasmic domains in localizing occludin in fibrils. To specifically address whether occludin's COOH-terminal cytoplasmic domain is sufficient to target it into tight junction fibrils, we created chimeras with the transmembrane portions of connexin 32. Despite the gap junction targeting information present in their transmembrane and extracellular domains, these connexin-occludin chimeras localized within fibrils when expressed in MDCK cells, as assessed by immunofluorescence and immunogold freeze-fracture imaging. Localization of chimeras at tight junctions depends on the COOH-terminal ZO-binding domain and not on the membrane proximal domain of occludin. Furthermore, neither endogenous occludin nor claudin is required for targeting to ZO-1-containing cell-cell contacts, since in normal rat kidney fibroblasts targeting of chimeras again required only the ZO-binding domain. These results suggest an important role for cytoplasmic proteins, presumably ZO-1, ZO-2, and ZO-3, in localizing occludin in tight junction fibrils. Such a scaffolding and cytoskeletal coupling function for ZO MAGUKs is analogous to that of other members of the MAGUK family.  (+info)

A recessive mutation leading to vertebral ankylosis in zebrafish is associated with amino acid alterations in the homologue of the human membrane-associated guanylate kinase DLG3. (7/610)

We describe the characterization of the zebrafish homologue of the human gene DLG3. The zebrafish dlg3 gene encodes a membrane-associated guanylate kinase containing a single PDZ domain. This gene was cloned using a gene-trap construct inserted in the gene's first intron. The insertion co-segregates with a viable mutation called humpback (hmp), which leads to formation of ankylotic vertebrae in adult fishes. Insertion and mutation have both been mapped to chromosome 12, in a segment which is syntenic with region p12 to q12 of human chromosome 17. The hmp mutant phenotype, however, appears to be due to two point mutations in the guanylate kinase domain rather than to the transgene insertion itself. The results of this study are discussed in the light of the possible function of the guanylate kinase domain.  (+info)

Association of neuronal calcium channels with modular adaptor proteins. (8/610)

Presynaptic voltage-gated calcium (Ca(2+)) channels mediate Ca(2+) influx into the presynaptic terminal that triggers synaptic vesicle fusion and neurotransmitter release. The immediate proximity of Ca(2+) channels to the synaptic vesicle release apparatus is critical for rapid and efficient synaptic transmission. In a series of biochemical experiments, we demonstrate a specific association of the cytosolic carboxyl terminus of the N-type Ca(2+) channel pore-forming alpha(1B) subunit with the modular adaptor proteins Mint1 and CASK. The carboxyl termini of alpha(1B) bind to the first PDZ domain of Mint1 (Mint1-1). The proline-rich region present in the carboxyl termini of alpha(1B) binds to the SH3 domain of CASK. Mint1-1 is specific for the E/D-X-W-C/S-COOH consensus, which defines a novel class of PDZ domains (class III). The Mint1-1 PDZ domain-binding motif is present only in the "long" carboxyl-terminal splice variants of N-type (alpha(1B)) and P/Q-type (alpha(1A)) Ca(2+) channels, but not in R-type (alpha(1E)) or L-type (alpha(1C)) Ca(2+) channels. Our results directly link presynaptic Ca(2+) channels to a macromolecular complex formed by modular adaptor proteins at synaptic junction and advance our understanding of coupling between cell adhesion and synaptic vesicle exocytosis.  (+info)