Distribution of ARF6 between membrane and cytosol is regulated by its GTPase cycle. (49/2538)

The ADP-ribosylation factor (ARF) subfamily of small GTPases regulates intracellular transport. Although much is known about how ARF1 regulates transport in the secretory pathways, regulation of the endocytic pathways by ARF6 remains less understood. In particular, whereas cycling of ARF1 between membrane and cytosol represents a major mechanism of regulating its function, this regulation has been questioned for ARF6. In this study, we found that ARF6 is distributed both on membranes and in the cytosol. Cytosolic ARF6 is recruited to membranes in a GTP-dependent manner that is fundamentally similar to ARF1. However, unlike ARF1, release of membrane-bound ARF6 to the cytosol requires hydrolysis of GTP that is sensitive to the level of magnesium. These findings suggest that the GTPase cycle of ARF6 also regulates its distribution between membrane and cytosol and that this form of regulation will also likely be important for the function of ARF6. Moreover, as ARF6 has little intrinsic ability to hydrolyze GTP, magnesium concentration most likely affects the release of membrane-bound ARF6 by altering the activity of its GTPase-activating protein.  (+info)

Selective interaction of the C2 domains of phospholipase C-beta1 and -beta2 with activated Galphaq subunits: an alternative function for C2-signaling modules. (50/2538)

Phospholipase C (PLC)-beta1 and PLC-beta2 are regulated by the Gq family of heterotrimeric G proteins and contain C2 domains. These domains are Ca2+-binding modules that serve as membrane-attachment motifs in a number of signal transduction proteins. To determine the role that C2 domains play in PLC-beta1 and PLC-beta2 function, we measured the binding of the isolated C2 domains to membrane bilayers. We found, unexpectedly, that these modules do not bind to membranes but they associate strongly and specifically to activated [guanosine 5'-[gamma-thio]triphosphate (GTP[gammaS])-bound] Galphaq subunits. The C2 domain of PLC-beta1 effectively suppressed the activation of the intact isozyme by Galphaq(GTP[gammaS]), indicating that the C2-Galphaq interaction may be physiologically relevant. C2 affinity for Galphaq(GTP[gammaS]) was reduced when Galphaq was deactivated to the GDP-bound state. Binding to activated Galphai1 subunits or to Gbetagamma subunits was not detected. Also, Galphaq(GTP[gammaS]) failed to associate with the C2 domain of PLC-delta, an isozyme that is not activated by Galphaq. These results indicate that the C2 domains of PLC-beta1 and PLC-beta2 provide a surface to which Galphaq subunits can dock, leading to activation of the native protein.  (+info)

Five-transmembrane domains appear sufficient for a G protein-coupled receptor: functional five-transmembrane domain chemokine receptors. (51/2538)

The putative seven-transmembrane (TM) domains have been the structural hallmark for the superfamily of heterotrimeric G protein-coupled receptors (GPCRs) that regulate a variety of cellular functions by mediating a large number of extracellular signals. Five-TM GPCR mutants of chemokine receptor CCR5 and CXCR4, the N-terminal segment of which connected directly to TM3 as a result of a deletion of TM1-2 and the first intracellular and extracellular loops, have been obtained in this study. Laser confocal microscopy and flow cytometry analysis revealed that these five-TM mutant GPCRs were expressed stably on the cell surface after transfection into human embryonic kidney 293 cells. The five-TM CCR5 and CXCR4 functioned as normal chemokine receptors in mediating chemokine-stimulated chemotaxis, Ca2+ influx, and activation of pertussis toxin-sensitive G proteins. Like the wild-type GPCRs, the five-TM mutant receptors also underwent agonist-dependent internalization and desensitization and were subjected to regulation by GPCR kinases and arrestins. Our study indicates that five-TM domains, at least in the case of CCR5 and CXCR4, appear to meet the minimum structural requirements for a functional GPCR and suggests possible existence of functional five-TM GPCRs in nature during evolution.  (+info)

Perinatal PTX-sensitive G-protein expression and regulation of conductive 22Na+ transport in lung apical membrane vesicles. (52/2538)

Using apical membrane vesicles (AMV) prepared from mature foetal and early neonatal guinea pig lung we show that pertussis toxin (PTX)-sensitive G-protein regulation of conductive 22Na+ uptake undergoes rapid changes following birth. Thus, G-protein activation by intravesicular incorporation of 100 microM GTPgammaS into vesicles resuspended in NaCl, which in late gestation stimulated uptake, consistently induced inhibition of conductive Na+ uptake into AMV prepared from neonatal lung at 4 days of age (N4) (52+/-9%, n=8, P<0.05). This response was not significantly different in the presence of the relatively impermeant anion isethionate (Ise-) (69+/-9%, n=7, P<0.05). Changes in the regulation of uptake were already detectable on the day of birth (N0) in AMV resuspended in NaCl, with GTPgammaS inducing both stimulatory and inhibitory responses. These data indicate that the processes by which 22Na+ uptake into AMV is regulated by G-proteins undergoes a change at birth and by 4 days of age, G-protein regulation of uptake occurs predominantly via modulation of co-localised Na+ channels. Intravesicular incorporation of GDPbetaS or pre-treatment with PTX did not significantly alter conductive 22Na+ uptake in the presence of NaCl or NaIse suggesting that constitutively active G-proteins are not involved in this process. Pre-treatment of AMV with PTX prevented the inhibition of conductive 22Na+ uptake by GTPgammaS (105+/-16% n=7) indicating that a PTX-sensitive G-protein mediates the inhibition of channels in neonatal AMV. Western blotting demonstrated enrichment of Gialpha1, Gialpha2, Gialpha3 and Goalpha in the apical membrane preparations. We also show that there is a significant rise in the levels of Gialpha3 during the early neonatal period providing a potential candidate for the G-protein mediated changes in regulation of conductive 22Na+ uptake in neonatal AMV.  (+info)

Comparison of the ligand binding and signaling properties of human dopamine D(2) and D(3) receptors in Chinese hamster ovary cells. (53/2538)

Human dopamine D(2) (hD(2)) and D(3) (hD(3)) receptors were expressed at similar, high expression levels in Chinese hamster ovary (CHO) cells, and their coupling to G proteins and further signal transduction pathways were compared. In competition radioligand-binding experiments, guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) treatment of hD(2S)- or hD(3)-CHO cell membranes induced a rightward shift and steeping of the dopamine inhibition curve. This effect was pronounced for hD(2) receptors and small for hD(3) receptors. Activation of G proteins was investigated in [(35)S]GTPgammaS-binding assays. Dopamine stimulated [(35)S]GTPgammaS binding 330 and 70% over basal levels on hD(2)-CHO and hD(3)-CHO cell membranes, respectively. (+)-7-(Dipropylamino)-5, 6,7,8-tetrahydro-2-naphthalenol and PD128907 were partial agonists for both receptors. Haloperidol, risperidone, raclopride, and nemonapride inhibited dopamine-stimulated [(35)S]GTPgammaS binding with potencies comparable to their binding affinities for hD(2) and hD(3) receptors in CHO cell membranes; inverse agonism could not be detected with this assay. Receptor stimulation by dopamine inhibited forskolin-induced cyclic AMP formation in hD(2)-CHO and hD(3)-CHO cells by 70%. Furthermore, the extracellular acidification rate increased when hD(2)-CHO and hD(3)-CHO cells were stimulated by dopamine; this effect was abolished by pertussis toxin pretreatment. In this study, we could demonstrate clear functional effects at different levels of the signaling cascade of hD(2) and hD(3) receptors in CHO cells when expressed at high levels. High-affinity agonist binding to hD(2) and hD(3) receptors was still present, but effects of receptor-G protein uncoupling at hD(3) receptors were small, indicating that hD(3) receptors maintain relatively high-affinity agonist binding in the absence of G proteins.  (+info)

Protein kinase C-promoted inhibition of Galpha(11)-stimulated phospholipase C-beta activity. (54/2538)

The effects of protein kinase C (PKC) activation on inositol lipid signaling were examined. Using the turkey erythrocyte model of receptor-regulated phosphoinositide hydrolysis, we developed a membrane reconstitution assay to study directly the effects of activation of PKC on the activities of Galpha(11), independent of potential effects on the receptor or on PLC-beta. Membranes isolated from erythrocytes pretreated with 4beta-phorbol-12beta-myristate-13alpha-acetate (PMA) exhibited a decreased capacity for Galpha(11)-mediated activation of purified, reconstituted PLC-beta1. This inhibitory effect was dependent on both the time and concentration of PMA incubation and occurred as a decrease in the efficacy of GTPgammaS for activation of PLC-beta1, both in the presence and absence of agonist; no change in the apparent affinity for the guanine nucleotide occurred. Similar inhibitory effects were observed after treatment with the PKC activator phorbol-12,13-dibutyrate but not after treatment with an inactive phorbol ester. The inhibitory effects of PMA were prevented by coaddition of the PKC inhibitor bisindolylmaleimide. Although the effects of PKC could be localized to the membrane, no phosphorylation of Galpha(11) occurred either in vitro in the presence of purified PKC or in intact erythrocytes after PMA treatment. These results support the hypothesis that a signaling protein other than Galpha(11) is the target for PKC and that PKC-promoted phosphorylation of this protein results in a phosphorylation-dependent suppression of Galpha(11)-mediated PLC-beta1 activation.  (+info)

Bombesin-like peptides depolarize rat hippocampal interneurones through interaction with subtype 2 bombesin receptors. (55/2538)

1. Whole-cell patch-clamp recordings were made from visually identified hippocampal interneurones in slices of rat brain tissue in vitro. Bath application of the bombesin-like neuropeptides gastrin-releasing peptide (GRP) or neuromedin B (NMB) produced a large membrane depolarization that was blocked by pre-incubation with the subtype 2 bombesin (BB2) receptor antagonist [D-Phe6, Des-Met14]bombesin-(6-14)ethyl amide. 2. The inward current elicited by NMB or GRP was unaffected by K+ channel blockade with external Ba2+ or by replacement of potassium gluconate in the electrode solution with caesium acetate. 3. Replacement of external NaCl with Tris-HCl significantly reduced the magnitude of the GRP-induced current at -60 mV. In contrast, replacement of external NaCl with LiCl had no effect on the magnitude of this current. 4. Photorelease of caged GTPgammaS inside neurones irreversibly potentiated the GRP-induced current at -60 mV. Similarly, bath application of the phospholipase C (PLC) inhibitor U-73122 significantly reduced the size of the inward current induced by GRP. 5. Reverse transcription followed by the polymerase chain reaction using cytoplasm from single hippocampal interneurones demonstrated the expression of BB2 receptor mRNA together with glutamate decarboxylase (GAD67). 6. Although bath application of GRP or NMB had little or no effect on the resting membrane properties of CA1 pyramidal cells per se, these neuropeptides produced a dramatic increase in the number and amplitude of miniature inhibitory postsynaptic currents in these cells in a TTX-sensitive manner.  (+info)

Roles for alpha(2)p24 and COPI in endoplasmic reticulum cargo exit site formation. (56/2538)

A two-step reconstitution system for the generation of ER cargo exit sites from starting ER-derived low density microsomes (LDMs; 1.17 g/cc) is described. The first step is mediated by the hydrolysis of Mg(2+)ATP and Mg(2+)GTP, leading to the formation of a transitional ER (tER) with the soluble cargo albumin, transferrin, and the ER-to-Golgi recycling membrane proteins alpha(2)p24 and p58 (ERGIC-53, ER-Golgi intermediate compartment protein) enriched therein. Upon further incubation (step two) with cytosol and mixed nucleotides, interconnecting smooth ER tubules within tER transforms into vesicular tubular clusters (VTCs). The cytosolic domain of alpha(2)p24 and cytosolic COPI coatomer affect VTC formation. This is deduced from the effect of antibodies to the COOH-terminal tail of alpha(2)p24, but not of antibodies to the COOH-terminal tail of calnexin on this reconstitution, as well as the demonstrated recruitment of COPI coatomer to VTCs, its augmentation by GTPgammaS, inhibition by Brefeldin A (BFA), or depletion of beta-COP from cytosol. Therefore, the p24 family member, alpha(2)p24, and its cytosolic coat ligand, COPI coatomer, play a role in the de novo formation of VTCs and the generation of ER cargo exit sites.  (+info)