Primary haemostasis: sticky fingers cement the relationship. (1/2528)

Platelet aggregation to form a haemostatic plug, or thrombus, plays a key role in preventing bleeding from a wound. Recent studies have provided new insights into how platelet receptors are deployed during the interactions with the vascular subendothelial matrix that lead to haemostatic plug formation.  (+info)

A strategy for enhancing the transcriptional activity of weak cell type-specific promoters. (2/2528)

Cell type- and tissue-specific promoters play an important role in the development of site-selective vectors for gene therapy. A large number of highly specific promoters has been described, but their applicability is often hampered by their inefficient transcriptional activity. In this study, we describe a new strategy for enhancing the activity of weak promoters without loss of specificity. The basic principle of this strategy is to establish a positive feedback loop which is initiated by transcription from a cell type-specific promoter. This was achieved by using a cell type-specific promoter to drive the simultaneous expression of the desired effector/reporter gene product and a strong artificial transcriptional activator which stimulates transcription through appropriate binding sites in the promoter. Using a VP16-LexA chimeric transcription factor, we show that this approach leads to a 14- to > 100-fold enhancement of both the endothelial cell-specific von Willebrand factor promoter and the gastrointestinal-specific sucrase-isomaltase promoter while maintaining approximately 30- to > 100-fold cell type specificity.  (+info)

Glycoprotein (GP) Ib-IX-transfected cells roll on a von Willebrand factor matrix under flow. Importance of the GPib/actin-binding protein (ABP-280) interaction in maintaining adhesion under high shear. (3/2528)

Adhesion of platelets to sites of vascular injury is critical for hemostasis and thrombosis and is dependent on the binding of the vascular adhesive protein von Willebrand factor (vWf) to the glycoprotein (GP) Ib-V-IX complex on the platelet surface. A unique but poorly defined characteristic of this receptor/ligand interaction is its ability to support platelet adhesion under conditions of high shear stress. To examine the structural domains of the GPIb-V-IX complex involved in mediating cell adhesion under flow, we have expressed partial (GPIb-IX), complete (GPIb-V-IX), and mutant (GPIbalpha cytoplasmic tail mutants) receptor complexes on the surface of Chinese hamster ovary (CHO) cells and examined their ability to adhere to a vWf matrix in flow-based adhesion assays. Our studies demonstrate that the partial receptor complex (GPIb-IX) supports CHO cell tethering and rolling on a bovine or human vWf matrix under flow. The adhesion was specifically inhibited by an anti-GPIbalpha blocking antibody (AK2) and was not observed with CHO cells expressing GPIbbeta and GPIX alone. The velocity of rolling was dependent on the level of shear stress, receptor density, and matrix concentration and was not altered by the presence of GPV. In contrast to selectins, which mediate cell rolling under conditions of low shear (20-200 s-1), GPIb-IX was able to support cell rolling at both venous (150 s-1) and arterial (1500-10,500 s-1) shear rates. Studies with a mutant GPIbalpha receptor subunit lacking the binding domain for actin-binding protein demonstrated that the association of the receptor complex with the membrane skeleton is not essential for cell tethering or rolling under low shear conditions, but is critical for maintaining adhesion at high shear rates (3000-6000 s-1). These studies demonstrate that the GPIb-IX complex is sufficient to mediate cell rolling on a vWf matrix at both venous and arterial levels of shear independent of other platelet adhesion receptors. Furthermore, our results suggest that the association between GPIbalpha and actin-binding protein plays an important role in enabling cells to remain tethered to a vWf matrix under conditions of high shear stress.  (+info)

Distinct structural attributes regulating von Willebrand factor A1 domain interaction with platelet glycoprotein Ibalpha under flow. (4/2528)

We have used recombinant von Willebrand factor (vWF) fragments to investigate the properties regulating A1 domain interaction with platelet glycoprotein (GP) Ibalpha. One fragment, rvWF508-704, represented the main portion of domain A1 (mature subunit residues 497-716) within the Cys509-Cys695 disulfide loop. The other, rvWF445-733, included the carboxyl-terminal region of domain D3, preceding A1, and corresponded to the proteolytic fragment originally identified as the GP Ibalpha-binding site (residues 449-728). Conformational changes were induced by reduction and alkylation of the Cys509-Cys695 bond and/or exposure to acidic pH. The cyclic rvWF445-733 fragment exhibited the function of native vWF A1 domain. When immobilized onto a surface, it tethered platelets at shear rates up to 6,300 s-1 mediating low velocity translocation but not stable attachment; in solution, it exhibited limited interaction with GP Ibalpha. In contrast, fragments with perturbed conformation could not tether platelets at high shear rates but promoted stable adhesion at lower shear and bound tightly to GP Ibalpha. Only in the presence of the exogenous modulator, botrocetin, did cyclic rvWF445-733 mediate irreversible adhesion. Thus, conformational transitions in the vWF A1 domain may influence differentially the efficiency of bond formation with GP Ibalpha and the stability of binding.  (+info)

Carbohydrate on human factor VIII/von Willebrand factor. Impairment of function by removal of specific galactose residues. (5/2528)

Human factor VIII/von Willebrand factor protein containing 120 +/- 12 nmol of sialic acid and 135 +/- 13 nmol of galactose/mg of protein was digested with neuraminidase. The affinity of native factor VIII/von Willebrand factor and its asialo form for the hepatic lectin that specifically binds asialoglycoproteins was assessed from in vitro binding experiments. Native factor VIII/von Willebrand factor exhibited negligible affinity while binding of the asialo derivative was comparable to that observed for asialo-alpha1-acid glycoprotein. Incubation of asialo-factor VIII/von Willebrand factor with Streptococcus pneumoniae beta-galactosidase removed only 62% of the galactose but abolished binding to the purified hepatic lectin. When the asialo derivative was incubated with purified beta-D-galactoside alpha2 leads to 6 sialyltransferase and CMP-[14C]NeuAc, only 61% of the galactose incorporated [14C]NeuAc. From the known specificites of these enzymes, it is concluded that galactose residues important in lectin binding are present in a terminal Gal/beta1 leads to 4GlcNAc sequence on asialo-factor VIII/von Willebrand factor. The relative ristocetin-induced platelet aggregating activity of native, asialo-, and agalacto-factor VIII/von Willebrand factor was 100:38:12, respectively, while procoagulant activity was 100:100:103.  (+info)

The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation in crustacean blood. (6/2528)

Coagulation in crayfish blood is based on the transglutaminase-mediated crosslinking of a specific plasma clotting protein. Here we report the cloning of the subunit of this clotting protein from a crayfish hepatopancreas cDNA library. The ORF encodes a protein of 1,721 amino acids, including a signal peptide of 15 amino acids. Sequence analysis reveals that the clotting protein is homologous to vitellogenins, which are proteins found in vitellogenic females of egg-laying animals. The clotting protein and vitellogenins are all lipoproteins and share a limited sequence similarity to certain other lipoproteins (e.g., mammalian apolipoprotein B and microsomal triglyceride transfer protein) and contain a stretch with similarity to the D domain of mammalian von Willebrand factor. The crayfish clotting protein is present in both sexes, unlike the female-specific vitellogenins. Electron microscopy was used to visualize individual clotting protein molecules and to study the transglutaminase-mediated clotting reaction. In the presence of an endogenous transglutaminase, the purified clotting protein molecules rapidly assemble into long, flexible chains that occasionally branch.  (+info)

Conformational changes in the A3 domain of von Willebrand factor modulate the interaction of the A1 domain with platelet glycoprotein Ib. (7/2528)

Bitiscetin has recently been shown to induce von Willebrand factor (vWF)-dependent aggregation of fixed platelets (Hamako J, et al, Biochem Biophys Res Commun 226:273, 1996). We have purified bitiscetin from Bitis arietans venom and investigated the mechanism whereby it promotes a form of vWF that is reactive with platelets. In the presence of bitiscetin, vWF binds to platelets in a dose-dependent and saturable manner. The binding of vWF to platelets involves glycoprotein (GP) Ib because it was totally blocked by monoclonal antibody (MoAb) 6D1 directed towards the vWF-binding site of GPIb. The binding also involves the GPIb-binding site of vWF located on the A1 domain because it was inhibited by MoAb to vWF whose epitopes are within this domain and that block binding of vWF to platelets induced by ristocetin or botrocetin. However, in contrast to ristocetin or botrocetin, the binding site of bitiscetin does not reside within the A1 domain but within the A3 domain of vWF. Thus, among a series of vWF fragments, 125I-bitiscetin only binds to those that overlap the A3 domain, ie, SpIII (amino acid [aa] 1-1365), SpI (aa 911-1365), and rvWF-A3 domain (aa 920-1111). It does not bind to SpII corresponding to the C-terminal part of vWF subunit (aa 1366-2050) nor to the 39/34/kD dispase species (aa 480-718) or T116 (aa 449-728) overlapping the A1 domain. In addition, bitiscetin that does not bind to DeltaA3-rvWF (deleted between aa 910-1113) has no binding site ouside the A3 domain. The localization of the binding site of bitiscetin within the A3 domain was further supported by showing that MoAb to vWF, which are specific for this domain and block the interaction between vWF and collagen, are potent inhibitors of the binding of bitiscetin to vWF and consequently of the bitiscetin-induced binding of vWF to platelets. Thus, our data support the hypothesis that an interaction between the A1 and A3 domains exists that may play a role in the function of vWF by regulating the ability of the A1 domain to bind to platelet GPIb.  (+info)

IL-8 mRNA expression by in situ hybridisation in human pituitary adenomas. (8/2528)

Several cytokines have been shown to be expressed in normal and adenomatous pituitary tissue. Recently, interleukin-8 (IL-8) mRNA was identified by reverse transcription (RT)-PCR in each of a series of 17 pituitary tumours examined. We have investigated further the presence of IL-8 mRNA, using in situ hybridisation in two normal human anterior pituitary specimens and 25 human pituitary adenomas. IL-8 mRNA was not identified in either of the two normal pituitary specimens. Only three of the 25 adenomas were positive for IL-8 mRNA. In these three tumours, which included two null cell adenomas and one gonadotrophinoma, the majority of tumour cells (>90%) were positive for IL-8 mRNA. The remaining 22 adenomas were completely negative. There was no difference in tumour size or type between the IL-8 positive and the IL-8 negative tumours, and immunocytochemistry for von Willebrandt factor showed that the two groups were also similar in their degree of vascularisation. In conclusion, IL-8 mRNA was found in 12% of pituitary adenomas studied and was histologically identified within the tumour cells. In situ hybridisation is a more appropriate technique for assessing cytokine mRNA production by human pituitary tumours because RT-PCR may be too sensitive, identifying very small, possibly pathologically insignificant, quantities of mRNA that could be produced by supporting cells such as fibroblasts, endothelial cells or macrophages.  (+info)