Transcriptional autorepression of the stress-inducible gene ATF3. (1/272)

Previously, we demonstrated that ATF3 (activating transcription factor-3) is a stress-inducible gene, and the protein it encodes is a transcriptional repressor. In this report, we present evidence suggesting that ATF3 represses the transcription of its own gene. Interestingly, efficient repression requires a consensus ATF/cAMP-responsive element site in the promoter and a previously unidentified ATF3-binding site immediately downstream from the TATA box. Although this new site resembles the known ATF/cAMP-responsive element sequences at the flanking sequence, it differs from them at the center key residues. These observations indicate that ATF3 can tolerate variations in the center of the binding sites if the flanking sequences are favorable. The repression of the ATF3 promoter by its own gene product provides a mechanistic explanation, at least in part, for the transient expression pattern of the ATF3 gene upon stress induction.  (+info)

Injury-specific expression of activating transcription factor-3 in retinal ganglion cells and its colocalized expression with phosphorylated c-Jun. (2/272)

PURPOSE: To ascribe activating transcription factor (ATF)-3 as a specifically induced transcription factor after ON injury and to describe its putative role as a modulator of c-Jun transactivation. METHODS: The adult rat optic nerve was crushed intraorbitally, and expression profiles of ATF-3, ATF-2, and phosphorylated c-Jun (p-c-Jun) were examined by immunohistochemistry and ISH. Western blot analysis for ATF-3 and -2 were also performed. Furthermore, colocalized detection of c-Jun mRNA with ATF-2 or -3 was attempted with a combined method of simultaneous immunohistochemistry and in situ hybridization. RESULTS: In response to optic nerve injury, substantial expression of ATF-3 as well as that of p-c-Jun was observed in the retinal ganglion cells, whereas no expression of ATF-3 was seen in other noninjured retinal cells. In contrast, ATF-2 was normally expressed abundantly in both retinal ganglion cells and displaced amacrine cells, but expression dropped in retinal ganglion cells after nerve injury. The expression profiles of ATF-2 and -3 after optic nerve injury were confirmed by Western blot analysis. A higher degree of colocalization was observed for ATF-3 and c-Jun than the modest codetection for ATF-2 and c-Jun. CONCLUSIONS: The transcription factor ATF-3 is specifically induced upon optic nerve injury and colocalizes with p-c-Jun in surviving ganglion cells. These findings suggest that both ATF-3 and c-Jun are crucial to trigger various transcriptional responses and may act synergistically during the survival phase of the optic nerve in the injury model.  (+info)

Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element. (3/272)

Activating transcription factor (ATF) 3 is a member of ATF/cyclic adenosine monophosphate (cAMP)-responsive element binding protein (ATF/CREB) family of transcription factors and functions as a stress-inducible transcriptional repressor. To understand the stress-induced gene regulation by homocysteine, we investigated activation of the ATF3 gene in human endothelial cells. Homocysteine caused a rapid induction of ATF3 at the transcriptional level. This induction was preceded by a rapid and sustained activation of c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK), and dominant negative mitogen-activated protein kinase kinase 4 and 7 abolished these effects. The effect of homocysteine appeared to be specific, because cysteine or homocystine had no appreciable effect, but it was mimicked by dithiothreitol and beta-mercaptoethanol as well as tunicamycin. The homocysteine effect was not inhibited by an active oxygen scavenger. Deletion analysis of the 5' flanking sequence of the ATF3 gene promoter revealed that one of the major elements responsible for the induction by homocysteine is an ATF/cAMP responsive element (CRE) located at -92 to -85 relative to the transcriptional start site. Gel shift, immunoprecipitation, and cotransfection assays demonstrated that a complex (or complexes) containing ATF2, c-Jun, and ATF3 increased binding to the ATF/CRE site in the homocysteine-treated cells and activated the ATF3 gene expression, while ATF3 appeared to repress its own promoter. These data together suggested a novel pathway by which homocysteine causes the activation of JNK/SAPK and subsequent ATF3 expression through its reductive stress. Activation of JNK/SAPK and ATF3 expression in response to homocysteine may have a functional role in homocysteinemia-associated endothelial dysfunction.  (+info)

High-mobility-group protein I can modulate binding of transcription factors to the U5 region of the human immunodeficiency virus type 1 proviral promoter. (4/272)

HMG I/Y appears to be a multifunctional protein that relies on in its ability to interact with DNA in a structure-specific manner and with DNA, binding transcriptional activators via distinct protein-protein interaction surfaces. To investigate the hypothesis that HMG I/Y may have a role in human immunodeficiency virus type 1 (HIV-1) expression, we have analyzed whether HMG I/Y interacts with the 5' long terminal repeat and whether this interaction can modulate transcription factor binding. Using purified recombinant HMG I, we have identified several high-affinity binding sites which overlap important transcription factor binding sites. One of these HMG I binding sites coincides with an important binding site for AP-1 located downstream of the transcriptional start site, in the 5' untranslated region at the boundary of a positioned nucleosome. HMG I binding to this composite site inhibits the binding of recombinant AP-1. Consistent with this observation, using nuclear extracts prepared from Jurkat T cells, we show that HMG I (but not HMG Y) is strongly induced upon phorbol myristate acetate stimulation and this induced HMG I appears to both selectively inhibit the binding of basal DNA-binding proteins and enhance the binding of an inducible AP-1 transcription factor to this AP-1 binding site. We also report the novel finding that a component present in this inducible AP-1 complex is ATF-3. Taken together, these results argue that HMG I may play a fundamental role in HIV-1 expression by determining the nature of transcription factor-promoter interactions.  (+info)

Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. (5/272)

Nrf2 regulates expression of genes encoding enzymes with antioxidant (e.g. heme oxygenase-1 (HO-1)) or xenobiotic detoxification (e.g. NAD(P)H:quinone oxidoreductase, glutathione S-transferase) functions via the stress- or antioxidant-response elements (StRE/ARE). Nrf2 heterodimerizes with small Maf proteins, but the role of such dimers in gene induction is controversial, and other partners may exist. By using the yeast two-hybrid assay, we identified activating transcription factor (ATF) 4 as a potential Nrf2-interacting protein. Association between Nrf2 and ATF4 in mammalian cells was confirmed by co-immunoprecipitation and mammalian two-hybrid assays. Furthermore, Nrf2.ATF4 dimers bound to an StRE sequence from the ho-1 gene. CdCl(2), a potent inducer of HO-1, increased expression of ATF4 in mouse hepatoma cells, and detectable induction of ATF4 protein preceded that of HO-1 (30 min versus 2 h). A dominant-negative mutant of ATF4 inhibited basal and CdCl(2)-stimulated expression of a StRE-dependent/luciferase fusion construct (pE1-luc) in hepatoma cells but only basal expression in mammary epithelial MCF-7 cells. A dominant mutant of Nrf2 was equally inhibitory in both cell types in the presence or absence of CdCl(2). These results indicate that ATF4 regulates basal and CdCl(2)-induced expression of the ho-1 gene in a cell-specific manner and possibly in a complex with Nrf2.  (+info)

Compensatory hepatic regeneration after mild, but not fulminant, intraperitoneal sepsis in rats. (6/272)

Sepsis is the leading cause of death in surgical intensive care units. Although both mild sepsis secondary to cecal ligation and single puncture (CLP) and fulminant, double puncture CLP (2CLP) may provoke hepatocyte death, we hypothesize that regeneration compensates for cell death after CLP but not 2CLP. In male Sprague-Dawley rats, hepatic necrosis, as determined by serum alpha-glutathione S-transferase (alpha-GST) levels, was significantly but equally elevated over time after both CLP and 2CLP. Apoptosis, evaluated using both terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and morphological examination, was minimal after both CLP and 2CLP. Regeneration, assayed by staining tissue for incorporation of exogenously administered bromodeoxyuridine, was present after CLP but not after 2CLP. To further substantiate impaired regeneration, steady-state levels of mRNAs encoding JunB, LRF-1, and cyclin D1 were determined. After 2CLP, the absence of JunB, LRF-1, and cyclin D1 mRNAs confirmed failed activation of the mitogen-activated protein kinase-linked proliferative pathway and progression through the cell cycle. Therefore, failed hepatocyte regeneration may be a manifestation of hepatic dysfunction in fulminant sepsis.  (+info)

Transcription factor ATF3 partially transforms chick embryo fibroblasts by promoting growth factor-independent proliferation. (7/272)

Activating Transcription Factor 3 (ATF3) is a member of the bZip family of transcription factors. Previous studies in mammalian cells suggested that like other bZip family members e.g. Jun and Fos, ATF3 might play a role in the control of cell proliferation and participate in oncogenic transformation. To investigate this putative ATF3 function directly, the rat ATF3 protein was compared with v-Jun for its ability to transform primary cultures of chick embryo fibroblasts (CEFs). Like CEFs accumulating v-Jun, CEFs accumulating the ATF3 protein displayed a typical, fusiform morphology, associated with an enhanced capacity to grow in medium with reduced amount of serum. However, in contrast to v-Jun-transformed CEFs, the ATF3 overexpressing cells could not promote colony formation from single cells in agar. Partial transformation induced by ATF3 was found to be associated with repression of multiple cellular genes that are also down-regulated by v-Jun, including those coding for the extracellular components fibronectin, decorin, thrombospondin 2, and the pro-apoptotic protein Par-4. These data demonstrate that, at least in primary avian cells, rat ATF3 possesses an intrinsic oncogenic potential. Moreover, the results suggest that ATF3 might induce growth factor independence by down-regulating a subset of the genes repressed by v-Jun.  (+info)

The roles of ATF3 in glucose homeostasis. A transgenic mouse model with liver dysfunction and defects in endocrine pancreas. (8/272)

Activating transcription factor 3 (ATF3) is a member of the ATF/cAMP-response element-binding protein family of transcription factors. It is a transcriptional repressor, and the expression of its corresponding gene is induced by stress signals in a variety of tissues, including the liver. In this report, we demonstrate that ATF3 is induced in the pancreas by partial pancreatectomy, streptozotocin treatment, and ischemia coupled with reperfusion. Furthermore, ATF3 is induced in cultured islet cells by oxidative stress. Interestingly, transgenic mice expressing ATF3 in the liver and pancreas under the control of the transthyretin promoter have defects in glucose homeostasis and perinatal lethality. We present evidence that expression of ATF3 in the liver represses the expression of genes encoding gluconeogenic enzymes. Furthermore, expression of ATF3 in the pancreas leads to abnormal endocrine pancreas and reduced numbers of hormone-producing cells. Analyses of embryos indicated that the ATF3 transgene is expressed in the ductal epithelium in the developing pancreas, and the transgenic pancreas has fewer mitotic cells than the non-transgenic counterpart, providing a potential explanation for the reduction of endocrine cells. Because ATF3 is a stress-inducible gene, these mice may represent a model to investigate the molecular mechanisms for some stress-associated diseases.  (+info)