Phialemonium fungemia: two documented nosocomial cases. (1/79)

Two fungal isolates recovered from the blood of two immunosuppressed patients are described as Phialemonium curvatum. One patient died, while the other, who was infected with Exophiala jeanselmei at the same time, survived after successful treatment with itraconazole. Analysis of internal transcribed spacer sequences demonstrated that the isolates belonged to the same strain and that the source of infection was probably a catheter. The taxonomic position of P. curvatum is discussed, and Phialemonium dimorphosporum is considered a synonym. The in vitro inhibitory activities of six antifungal agents (amphotericin B, itraconazole, ketaconazole, miconazole, flucytosine, and fluconazole) were determined against seven isolates of Phialemonium. Except for flucytosine, all of them were remarkably effective. Phialemonium should be added to the list of potential causes of nosocomial fungemia in cancer patients.  (+info)

A case of melanonychia caused by Exophiala dermatitidis. (2/79)

We report a case of a healthy 61-year-old woman with discoloration of the nail on her right big toe. We first treated her with topical steroid and urea under suspected diagnosis of nail eczema, but the lesion remained. In culture, black, shiny, pasty and yeast-like colonies grew repeatedly. Examination of debris from her nail showed dematiaceous spherical cells and hyphal elements. Microscopically, annelloconidia were produced at the apical ends of anellidic conidiogenous cells. This colony grew at 40C. Mitochondrial DNA restriction fragment length polymorphism was analysed in this strain and its restriction pattern confirmed the isolate to be Exophiala dermatitidis. Based on these findings, we diagnosed this nail deformity as fungal melanonychia due to Exophiala dermatitidis. This is the third reported case of this disease.  (+info)

WdChs4p, a homolog of chitin synthase 3 in Saccharomyces cerevisiae, alone cannot support growth of Wangiella (Exophiala) dermatitidis at the temperature of infection. (3/79)

By using improved transformation methods for Wangiella dermatitidis, and a cloned fragment of its chitin synthase 4 structural gene (WdCHS4) as a marking sequence, the full-length gene was rescued from the genome of this human pathogenic fungus. The encoded chitin synthase product (WdChs4p) showed high homology with Chs3p of Saccharomyces cerevisiae and other class IV chitin synthases, and Northern blotting showed that WdCHS4 was expressed at constitutive levels under all conditions tested. Reduced chitin content, abnormal yeast clumpiness and budding kinetics, and increased melanin secretion resulted from the disruption of WdCHS4 suggesting that WdChs4p influences cell wall structure, cellular reproduction, and melanin deposition, respectively. However, no significant loss of virulence was detected when the wdchs4Delta strain was tested in an acute mouse model. Using a wdchs1Delta wdchs2Delta wdchs3Delta triple mutant of W. dermatitidis, which grew poorly but adequately at 25 degrees C, we assayed WdChs4p activity in the absence of activities contributed by its three other WdChs proteins. Maximal activity required trypsin activation, suggesting a zymogenic nature. The activity also had a pH optimum of 7.5, was most stimulated by Mg(2+), and was more inhibited by polyoxin D than by nikkomycin Z. Although the WdChs4p activity had a broad temperature optimum between 30 to 45 degrees C in vitro, this activity alone did not support the growth of the wdchs1Delta wdchs2Delta wdchs3Delta triple mutant at 37 degrees C, a temperature commensurate with infection.  (+info)

WdCHS3, a gene that encodes a class III chitin synthase in Wangiella (Exophiala) dermatitidis, is expressed differentially under stress conditions. (4/79)

Class III chitin synthases are important for hyphal growth in some filamentous fungi but are not found in yeasts. Using a specific PCR product that encodes a portion of the class III chitin synthase of W. dermatitidis as a probe, we isolated the chitin synthase gene, WdCHS3, from this polymorphic melanized pathogen of humans. Northern blotting showed that WdCHS3 was highly expressed under stress conditions, such as the shift of cells to temperatures commensurate with infection, or to conditions that induce cellular morphogenesis in this fungus. Analysis of the 5' upstream sequence of WdCHS3 provided evidence for a negative regulatory element at between -780 and -1600 bp. Western blotting indicated that the production of the WdChs3p was temperature dependent and temporally regulated. Disruption of WdCHS3 in a wild-type strain and in two temperature-sensitive morphological mutants resulted in significantly reduced chitin synthase activities but did not obviously affect their morphologies, growth rates, chitin contents, or virulence. This paradox suggested that the contributions of the high levels of WdCHS3 gene expression and WdChs3p production in strains subjected to stress reside in unknown or unexamined parts of the life cycle of this ecologically poorly known member of the Fungi Imperfecti. Nonetheless, this report presents the first evidence that transcription of a chitin synthase gene is regulated by a negative regulatory element in its 5' upstream sequence.  (+info)

Acute cerebral phaeohyphomycosis due to Wangiella dermatitidis accompanied by cerebrospinal fluid eosinophilia. (5/79)

We report a case of cerebral phaeohyphomycosis due to Wangiella dermaitidis in an immunocompetent adult man. His cerebrospinal fluid (CSF) showed pleocytosis with a high eosinophil count but without peripheral blood eosinophilia. The present case suggested that this black yeast-like fungus should be included when the causes of CSF eosinophilia are considered, even though it is an extremely rare pathogen.  (+info)

Expression of a constitutively active Cdc42 homologue promotes development of sclerotic bodies but represses hyphal growth in the zoopathogenic fungus Wangiella (Exophiala) dermatitidis. (6/79)

In contrast to the CDC42 homologues of Saccharomyces cerevisiae and Schizosaccharomyces pombe, the WdCDC42 gene in the human pathogenic fungus Wangiella (Exophiala) dermatitidis was found to be nonessential for cell viability. Expression of the constitutively active allele wdcdc42(G14V) at 37 degrees C induced nonpolarized growth that led to cell enlargement and multiple nucleation. The swollen cells subsequently converted into planate divided bicellular forms or multiply septated sclerotic bodies in post-log phase, when the G14V-altered protein was diminished. The wdcdc42(G14V) mutation also strongly repressed filamentous growth both in the wild-type strain and in the temperature-sensitive hyphal-form mutant Hf1. In contrast, overexpression of the dominant negative alleles wdcdc42(T19N) and wdcdc42(D120A) had no obvious effect on fungal-cell polarization. These results suggested that WdCdc42p plays a unique regulatory role in cellular morphogenesis in W. dermatitidis. Activation of this protein in response to extracellular or intracellular signals seems to commit its yeast-like cells to a phenotype transition that produces sclerotic bodies while repressing hyphal development.  (+info)

Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. (7/79)

1,8-Dihydroxynaphthalene (1,8-DHN) is a fungal polyketide that contributes to virulence when polymerized to 1,8-DHN melanin in the cell walls of Wangiella dermatitidis, an agent of phaeohyphomycosis in humans. To begin a genetic analysis of the initial synthetic steps leading to 1,8-DHN melanin biosynthesis, a 772-bp PCR product was amplified from genomic DNA using primers based on conserved regions of fungal polyketide synthases (Pks) known to produce the first cyclized 1,8-DHN-melanin pathway intermediate, 1,3,6,8-tetrahydroxynaphthalene. The cloned PCR product was then used as a targeting sequence to disrupt the putative polyketide synthase gene, WdPKS1, in W. dermatitidis. The resulting wdpks1Delta disruptants showed no morphological defects other than an albino phenotype and grew at the same rate as their black wild-type parent. Using a marker rescue approach, the intact WdPKS1 gene was then successfully recovered from two plasmids. The WdPKS1 gene was also isolated independently by complementation of the mel3 mutation in an albino mutant of W. dermatitidis using a cosmid library. Sequence analysis substantiated that WdPKS1 encoded a putative polyketide synthase (WdPks1p) in a single open reading frame consisting of three exons separated by two short introns. This conclusion was supported by the identification of highly conserved Pks domains for a beta-ketoacyl synthase, an acetyl-malonyl transferase, two acyl carrier proteins, and a thioesterase in the deduced amino acid sequence. Studies using a neutrophil killing assay and a mouse acute-infection model confirmed that all wdpks1Delta strains were less resistant to killing and less virulent, respectively, than their wild-type parent. Reconstitution of 1,8-DHN melanin biosynthesis in a wdpks1Delta strain reestablished its resistance to killing by neutrophils and its ability to cause fatal mouse infections.  (+info)

Purification and characterization of cyclohexanone 1,2-monooxygenase from Exophiala jeanselmei strain KUFI-6N. (8/79)

Baeyer-Villiger cyclohexanone 1,2-monooxygenase (CHMO) was purified 17.1-fold from cell extracts of the fungus Exophiala jeanselmei grown on cyclohexanol to electrophoretically homogeneity by serial chromatographies. The molecular mass of the native enzyme was approximately 74 kDa by gel filtration and SDS-PAGE. Some enzymic characterizations were studied. The NH2-terminal amino acid residues were Ala-Lys-Ser-Leu-Asp-Val-Leu-Ile-Val-Gly-Ala-Gly-Phe-Gly-Gly-Ile-Tyr-Gln-Leu-, with similarity to the bacterial CHMOs of FAD-binding and NADPH-dependent type Baeyer-Villiger monooxygenases.  (+info)