A review of the pharmacology, pharmacokinetics and behavioral effects of procaine in thoroughbred horses. (1/1604)

Since procaine has both local anaesthetic and central stimulant actions its presence in the blood or urine of racing horses is forbidden. After rapid intravenous injection of procaine HC1 (2.5 mg/Kg) in thoroughbred mares plasma levels of this drug fell rapidly (t 1/2 alpha = 5 min) and then more slowly (t 1/2 beta = 50.2 min). These kinetics were well fitted by a two compartment open model (Model I). This model gave an apparent Vdbeta for procaine in the horse of about 3,500 litres. Since procaine was about 45% bound to equine plasma protein this gives a true Vdbeta for procaine of about 6,500 litres. After subcutaneous injection of procaine HC1 (3.3 mg/Kg) plasma levels peaked at about 400 ng/ml and then declined with a half-life of about 75 minutes. These data were well fitted by Model I when this was modified to include simple first order absorption (K = 0.048 min-1) from the subcutaneous injection site (Model II). After intramuscular injection of procaine penicillin (33,000 I.U./Kg) plasma levels reached a peak at about 270 ng/ml and then declined with a half-life of about 9 hours. These data were approximately fitted by Model II assuming a first order rate constant for absorption of procaine of 0.0024 min-1. After intramuscular injection of procaine HC1 (10 mg/Kg) plasma levels of procaine peaked rapidly at about 600 ng/ml but thereafter declined slowly (+ 1/2 = 2 hours). A satisfactory pharmaco-kinetic model for this intramuscular data could not be developed. An approximation of these data was obtained by assuming the existence of two intramuscular drug compartments, one containing readily absorbable drug and the other poorly absorbable drug (Model III). After intra-articular administration of procaine (0.33 mg/Kg) plasma levels of this drug reached a peak at about 17 ng/ml and then declined with a half-life of about 2 hours. These data were not modelled.  (+info)

Polymorphism in a cyclic parthenogenetic species: Simocephalus serrulatus. (2/1604)

A survey of sixteen isozyme loci using electrophoretic techniques was conducted for three isolated natural populations and one laboratory population of the cyclic parthenogenetic species, Simocephalus serrulatus. The proportion of polymorphic loci (33%-60%) and the average number of heterozygous loci per individual (6%-23%) in the three natural populations were found to be comparable to those found in most sexually reproducing organisms. Detailed analyses were made for one of these populations using five polymorphic loci. The results indicated that (1) seasonal changes in genotypic frequencies took place, (2) apomicitic parthenogenesis does not lead to genetic homogeneity, and (3) marked gametic disequilibrium at these five loci was present in the population, indicating that selection acted on coadapted groups of genes.  (+info)

The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. (3/1604)

The primary routes of insecticide resistance in all insects are alterations in the insecticide target sites or changes in the rate at which the insecticide is detoxified. Three enzyme systems, glutathione S-transferases, esterases and monooxygenases, are involved in the detoxification of the four major insecticide classes. These enzymes act by rapidly metabolizing the insecticide to non-toxic products, or by rapidly binding and very slowly turning over the insecticide (sequestration). In Culex mosquitoes, the most common organophosphate insecticide resistance mechanism is caused by co-amplification of two esterases. The amplified esterases are differentially regulated, with three times more Est beta 2(1) being produced than Est alpha 2(1). Cis-acting regulatory sequences associated with these esterases are under investigation. All the amplified esterases in different Culex species act through sequestration. The rates at which they bind with insecticides are more rapid than those for their non-amplified counterparts in the insecticide-susceptible insects. In contrast, esterase-based organophosphate resistance in Anopheles is invariably based on changes in substrate specificities and increased turnover rates of a small subset of insecticides. The up-regulation of both glutathione S-transferases and monooxygenases in resistant mosquitoes is due to the effects of a single major gene in each case. The products of these major genes up-regulate a broad range of enzymes. The diversity of glutathione S-transferases produced by Anopheles mosquitoes is increased by the splicing of different 5' ends of genes, with a single 3' end, within one class of this enzyme family. The trans-acting regulatory factors responsible for the up-regulation of both the monooxygenase and glutathione S-transferases still need to be identified, but the recent development of molecular tools for positional cloning in Anopheles gambiae now makes this possible.  (+info)

An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. (4/1604)

Insecticide resistance genes have developed in a wide variety of insects in response to heavy chemical application. Few of these examples of adaptation in response to rapid environmental change have been studied both at the population level and at the gene level. One of these is the evolution of the overproduced esterases that are involved in resistance to organophosphate insecticides in the mosquito Culex pipiens. At the gene level, two genetic mechanisms are involved in esterase overproduction, namely gene amplification and gene regulation. At the population level, the co-occurrence of the same amplified allele in distinct geographic areas is best explained by the importance of passive transportation at the worldwide scale. The long-term monitoring of a population of mosquitoes in southern France has enabled a detailed study to be made of the evolution of resistance genes on a local scale, and has shown that a resistance gene with a lower cost has replaced a former resistance allele with a higher cost.  (+info)

Isolation and complete covalent structure of liver microsomal paraoxonase. (5/1604)

Paraoxonase (PON1) is a serum esterase exclusively associated with high-density lipoproteins; it might confer protection against coronary artery disease by destroying pro-inflammatory oxidized lipids in oxidized low-density lipoproteins. Here I show that rabbit liver microsomes contain a PON analogue (MsPON) and report the isolation and complete covalent structure of MsPON. In detergent-solubilized microsomes, MsPON co-purifies with the microsomal triacylglycerol transfer protein (MTP) complex. MsPON was separated from the complex and purified to homogeneity under non-denaturing conditions. Automated sequence analysis of intact MsPON and peptides obtained from enzymic and chemical cleavages led to the elucidation of the complete covalent structure of MsPON. The protein is a single polypeptide consisting of 350 residues. The sequence of rabbit liver microsomal MsPON is 60% identical with that of rabbit serum PON1, and 84% identical with the sequence predicted by a human cDNA of unknown function, designated PON3. MsPON has a hydrophobic segment at the N-terminus that might serve to anchor the protein to the microsomal membrane or to the MTP complex. Unlike in the serum enzyme, two potential N-glycan acceptor sites in MsPON are not glycosylated. An absence of N-glycans was also indicated in the rabbit liver MTP. MsPON has a single free cysteine residue at position 38 and a disulphide bond between Cys-279 and Cys-348. The microsomal enzyme lacks three residues at the N-terminus that are present in the serum protein. MsPON lacks four residues at the C-terminus that are present in the rabbit serum protein but absent from human serum PON1. On the basis of the observation that MsPON displays a high degree of similarity with serum PON1, it is proposed that MsPON might have a function related to that of PON1 in serum high-density lipoprotein complexes.  (+info)

Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. (6/1604)

A novel and potent azetidinone inhibitor of the lipoprotein-associated phospholipase A2 (Lp-PLA2), i.e. platelet-activating factor acetylhydrolase, is described for the first time. This inhibitor, SB-222657 (Ki=40+/-3 nM, kobs/[I]=6. 6x10(5) M-1.s-1), is inactive against paraoxonase, is a poor inhibitor of lecithin:cholesterol acyltransferase and has been used to investigate the role of Lp-PLA2 in the oxidative modification of lipoproteins. Although pretreatment with SB-222657 did not affect the kinetics of low-density lipoprotein (LDL) oxidation by Cu2+ or an azo free-radical generator as determined by assay of lipid hydroperoxides (LOOHs), conjugated dienes and thiobarbituric acid-reacting substances, in both cases it inhibited the elevation in lysophosphatidylcholine content. Moreover, the significantly increased monocyte chemoattractant activity found in a non-esterified fatty acid fraction from LDL oxidized by Cu2+ was also prevented by pretreatment with SB-222657, with an IC50 value of 5.0+/-0.4 nM. The less potent diastereoisomer of SB-222657, SB-223777 (Ki=6.3+/-0.5 microM, kobs/[I]=1.6x10(4) M-1.s-1), was found to be significantly less active in both assays. Thus, in addition to generating lysophosphatidylcholine, a known biologically active lipid, these results demonstrate that Lp-PLA2 is capable of generating oxidized non-esterified fatty acid moieties that are also bioactive. These findings are consistent with our proposal that Lp-PLA2 has a predominantly pro-inflammatory role in atherogenesis. Finally, similar studies have demonstrated that a different situation exists during the oxidation of high-density lipoprotein, with enzyme(s) other than Lp-PLA2 apparently being responsible for generating lysophosphatidylcholine.  (+info)

Re-entering the translocon from the lumenal side of the endoplasmic reticulum. Studies on mutated carboxypeptidase yscY species. (7/1604)

Misfolded or unassembled secretory proteins are retained in the endoplasmic reticulum (ER) and subsequently degraded by the cytosolic ubiquitin-proteasome system. This requires their retrograde transport from the ER lumen into the cytosol, which is mediated by the Sec61 translocon. It had remained a mystery whether ER-localised soluble proteins are at all capable of re-entering the Sec61 channel de novo or whether a permanent contact of the imported protein with the translocon is a prerequisite for retrograde transport. In this study we analysed two new variants of the mutated yeast carboxypeptidase yscY, CPY*: a carboxy-terminal fusion protein of CPY* and pig liver esterase and a CPY* species carrying an additional glycosylation site at its carboxy-terminus. With these constructs it can be demonstrated that the newly synthesised CPY* chain is not retained in the translocation channel but reaches its ER lumenal side completely. Our data indicate that the Sec61 channel provides the essential pore for protein transport through the ER membrane in either direction; persistent contact with the translocon after import seems not to be required for retrograde transport.  (+info)

Activation of stimulus-specific serine esterases (proteases) in the initiation of platelet secretion. I. Demonstration with organophosphorus inhibitors. (8/1604)

The effect of organophosphorus inhibitors of serine esterases (proteases) on secretion from washed rabbit platelets was examined. Five noncytotoxic stimuli were employed: collagen, thrombin, heterologous anti-platelet antibody (in the absence of complement), rabbit C3 bound to zymosan, and platelet activating factor derived from antigen-stimulated, IgE-sensitized rabbit basophils. Diisoprophyl phosphofluoridate, three series of p-nitrophenyl ethyl phosphonates, and a series of cyclohexyl phenylalkylphosphonofluridates were all found to be inhibitory to the platelet secretion. These are irreversible inhibitors of serine proteases but in this system were only inhibitory if added to the platelets concurrently with the stimuli. Pretreatment of either the platelets or the stimuli with the inhibitors followed by washing, was without effect on the subsequent reaction. This suggested the involvement of stimulus-activatable serine proteases in the secretory process. The concept was supported by finding that nonphosphorylating phosphonates or hydrolyzed phosphonates or phosphonofluoridates were without inhibitory action. The effect of a series of phosphonates or phosphonoflouridates in inhibiting each stimulus exhibited a unique activity-structure profile. The demonstration of such unique profiles with four series of inhibitors for each of the five stimuli was interpreted as demonstrating that a specific activatable serine protease was involved in the platelet secretory response to each stimulus.  (+info)