Skin morphology and its role in thermoregulation in mole-rats, Heterocephalus glaber and Cryptomys hottentotus. (1/4651)

The skin structure of 2 Bathyergid rodents, the naked mole-rat (Heterocephalus glaber) and the common mole-rat (Cryptomys hottentotus) is compared, to investigate whether thermoregulatory differences may be attributed to different skin features. Histological and ultrastructural studies of the dorsal skin of these closely related species show morphological and structural similarities but differences in the degree of skin folding, thickness of the integument and dermal infrastructure were evident. The skin of the common mole-rat conforms with expected morphological/histological arrangements that are commonly found in mammalian skin. Many features of the skin of the naked mole-rat, such as the lack of an insulating layer and the loosely folded morphological arrangement contribute to poikilothermic responses to changing temperatures of this mammal. Further evidence for poikilothermy in the naked mole-rat is indicated by the presence of pigment containing cells in the dermis, rather than the epidermis, as commonly occurs in homeotherms. Lack of fur is compensated by a thicker epidermal layer and a marked reduction in sweat glands. Differences in skin morphology thus contribute substantially to the different thermoregulatory abilities of the 2 Bathyergids. The skin morphology is related to the poor thermoinsulatory ability of the animals while simultaneously facilitating heat transfer from the environment to the animal by thigmothermy and/or other behavioural means.  (+info)

Expression of dominant negative Erk2 inhibits AP-1 transactivation and neoplastic transformation. (2/4651)

The mitogen activated protein (MAP) kinases or extracellular signal-regulated kinases (Erks) are activated in response to Ras expression or exposure to tumor promoters or to growth factors, and have been implicated in AP-1 transactivation in some models. We have shown that tumor promoter induced activation of the transcription factor AP-1 is required for induced neoplastic transformation in the Balb/C JB6 cell model. Jun and Fos family protein levels have been found not to be limiting for AP-1 response. The present study asks whether activation of Erks1 and 2 is required for AP-1 transactivation and transformation of JB6 cells and whether Erks might be targeted for cancer prevention. Expression of either of two different dominant negative kinase inactive Erk2 mutants in transformation sensitive (P+) JB6 cells substantially inhibited the tumor promoter induced activation of Erks1 and 2 and of AP-1 measured by a collagenase-luciferase reporter. Multiple mutant Erk2 expressing clonal lines were also rendered non-responsive to induced neoplastic transformation. These observations, together with our recent finding attributing AP-1 non-responsiveness to Erk deficiency in a clonal line of transformation resistant (P-) cells, argue for a requirement for Erks1 and/or 2 activation in AP-1 transactivation in the mouse JB6 neoplastic progression model, and suggest the utility of Erks as a prevention target.  (+info)

Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. (3/4651)

We investigated whether uninjured cutaneous C-fiber nociceptors in primates develop abnormal responses after partial denervation of the skin. Partial denervation was induced by tightly ligating spinal nerve L6 that innervates the dorsum of the foot. Using an in vitro skin-nerve preparation, we recorded from uninjured single afferent nerve fibers in the superficial peroneal nerve. Recordings were made from 32 C-fiber nociceptors 2-3 wk after ligation and from 29 C-fiber nociceptors in control animals. Phenylephrine, a selective alpha1-adrenergic agonist, and UK14304 (UK), a selective alpha2-adrenergic agonist, were applied to the receptive field for 5 min in increasing concentrations from 0.1 to 100 microM. Nociceptors from in vitro control experiments were not significantly different from nociceptors recorded by us previously in in vivo experiments. In comparison to in vitro control animals, the afferents found in lesioned animals had 1) a significantly higher incidence of spontaneous activity, 2) a significantly higher incidence of response to phenylephrine, and 3) a higher incidence of response to UK. In lesioned animals, the peak response to phenylephrine was significantly greater than to UK, and the mechanical threshold of phenylephrine-sensitive afferents was significantly lower than for phenylephrine-insensitive afferents. Staining with protein gene product 9.5 revealed an approximately 55% reduction in the number of unmyelinated terminals in the epidermis of the lesioned limb compared with the contralateral limb. Thus uninjured cutaneous C-fiber nociceptors that innervate skin partially denervated by ligation of a spinal nerve acquire two abnormal properties: spontaneous activity and alpha-adrenergic sensitivity. These abnormalities in nociceptor function may contribute to neuropathic pain.  (+info)

WNT signaling in the control of hair growth and structure. (4/4651)

Characterization of the molecular pathways controlling differentiation and proliferation in mammalian hair follicles is central to our understanding of the regulation of normal hair growth, the basis of hereditary hair loss diseases, and the origin of follicle-based tumors. We demonstrate that the proto-oncogene Wnt3, which encodes a secreted paracrine signaling molecule, is expressed in developing and mature hair follicles and that its overexpression in transgenic mouse skin causes a short-hair phenotype due to altered differentiation of hair shaft precursor cells, and cyclical balding resulting from hair shaft structural defects and associated with an abnormal profile of protein expression in the hair shaft. A putative effector molecule for WNT3 signaling, the cytoplasmic protein Dishevelled 2 (DVL2), is normally present at high levels in a subset of cells in the outer root sheath and in precursor cells of the hair shaft cortex and cuticle which lie immediately adjacent to Wnt3-expressing cells. Overexpression of Dvl2 in the outer root sheath mimics the short-hair phenotype produced by overexpression of Wnt3, supporting the hypothesis that Wnt3 and Dvl2 have the potential to act in the same pathway in the regulation of hair growth. These experiments demonstrate a previously unrecognized role for WNT signaling in the control of hair growth and structure, as well as presenting the first example of a mammalian phenotype resulting from overexpression of a Dvl gene and providing an accessible in vivo system for analysis of mammalian WNT signaling pathways.  (+info)

MDM2 overexpression generates a skin phenotype in both wild type and p53 null mice. (5/4651)

The MDM2 proto-oncogene is overexpressed in human tumours and regulates the activities of the tumour suppressors p53 and pRB. We created mice that overexpress MDM2 under the control of the CMV promoter. These mice did not display an increased tumour incidence, but rather a specific skin phenotype, characterized by desquamation and hyperkeratosis. Transgenic MDM2 was found to be overexpressed in the epidermis, a tissue that normally expresses high levels of MDM2. The phenotype appeared during the first week after birth and then lessened with age, closely following the level of expression of the transgene. MDM2 overexpression was associated with an increase in proliferation in the basal layer, thickening of the epidermis, altered expression of the differentiation markers cytokeratin CK14, CK10 and CK1, and a decrease in the size and the number of granules that contain products of differentiation. Transgenic mice on a p53 null background displayed similar although not identical changes, showing that the effects of MDM2 are to a certain degree p53 independent. The skin is a major site of MDM2 expression in mice, raising the possibility that MDM2 overexpression perturbs the normal pattern of MDM2 expression and inhibits differentiation of the epidermis.  (+info)

Glucocorticoid mediation of dietary energy restriction inhibition of mouse skin carcinogenesis. (6/4651)

Dietary energy restriction (DER) inhibits carcinogenesis in numerous animal models. DER is a potent and reproducible inhibitor of two-stage mouse skin carcinogenesis when administered during the promotion phase. Previous research demonstrated that adrenalectomy abolished cancer prevention by food restriction. Several lines of evidence suggest that glucocorticoid elevation in the DER mouse mediates the prevention of skin cancer. Our research tested the hypothesis that elevated glucocorticoid hormone activates the glucocorticoid receptor (GR) and that this activated receptor interferes with the activator protein-1 (AP-1) transcription factor. Induction of AP-1 by the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) is essential to tumor promotion. We have been unable to demonstrate elevated activated GR in the epidermis of the DER mouse, perhaps because only indirect strategies have been possible with the use of epidermis from DER mice. However, DER blocked the induction of AP-1 and c-jun, a constituent protein of AP-1, in the epidermis of mice. Current studies are focused on the inhibition of signaling down the MAP-1/Raf-1 kinase pathway that leads to induction of constituent proteins of AP-1, including c-Jun. Although several pathways lead to the induction of AP-1 transcriptional activity, the MAP-1/Raf-1 pathway can be activated by protein kinase C (PKC); previous studies from our laboratory demonstrated an inhibition of PKC activity and a reduction in selected isoforms of PKC in the epidermis of the DER mouse. Our current working hypothesis is that elevated glucocorticoid hormone in the DER mouse reduces the amount and activity of PKC isoforms important in the activation of MAP-1/Raf-1 kinase pathway. We propose that this results in attenuation in the induction of the AP-1 transcription factor by TPA. Because AP-1 induction by TPA is obligatory for mouse skin promotion, we propose this as an essential component of the mechanism of DER prevention of mouse skin carcinogenesis.  (+info)

Effect of magnetic field exposure on anchorage-independent growth of a promoter-sensitive mouse epidermal cell line (JB6). (7/4651)

The anchorage-independent growth of mouse epidermal cells (JB6) exposed to 60-Hz magnetic fields (MF) was investigated. Promotion-responsive JB6 cells were suspended in agar (10(4)cells/plate) and exposed continuously to 0.10 or 0.96 mT, 60-Hz magnetic fields for 10-14 days, with or without concurrent treatment with the tumor promoter tetradecanoylphorbol acetate (TPA). Exposures to MF were conducted in a manner such that the experimenter was blind to the treatment group of the cells. At the end of the exposure period, the anchorage-independent growth of JB6 cells on soft agar was examined by counting the number of colonies larger than 60 microm (minimum of 60 cells). The use of a combined treatment of the cells with both MF and TPA was to provide an internal positive control to estimate the success of the assay and to allow evaluation of co-promotion. Statistical analysis was performed by a randomized block design analysis of variance to examine both the effect of TPA treatment (alone and in combination with MF exposure) and the effect of intra-assay variability. Transformation frequency of JB6 cells displayed a dose-dependent response to increasing concentrations of TPA. Coexposure of cells to both TPA and 0.10 or 0.96 mT, 60-Hz MF did not result in any differences in transformation frequency for any TPA concentrations tested (0-1 ng/ml). These data indicate that exposure to a 0.10 or 0.96 mT, 60-Hz MF does not act as a promoter or co-promoter in promotion-sensitive JB6 cell anchorage-independent growth.  (+info)

Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. (8/4651)

Resveratrol, a plant constituent enriched in the skin of grapes, is one of the most promising agents for the prevention of cancer. However, the mechanism of the anti-carcinogenic activity of resveratrol is not well understood. Here we offer a possible explanation of its anti-cancer effect. Resveratrol suppresses tumor promoter-induced cell transformation and markedly induces apoptosis, transactivation of p53 activity and expression of p53 protein in the same cell line and at the same dosage. Also, resveratrol-induced apoptosis occurs only in cells expressing wild-type p53 (p53+/+), but not in p53-deficient (p53-/-) cells, while there is no difference in apoptosis induction between normal lymphoblasts and sphingomyelinase-deficient cell lines. These results demonstrate for the first time that resveratrol induces apoptosis through activation of p53 activity, suggesting that its anti-tumor activity may occur through the induction of apoptosis.  (+info)