Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase. (17/1374)

Hepatitis C virus (HCV) is prevalent worldwide and has become a major cause of liver dysfunction and hepatocellular carcinoma. The high prevalence of HCV reflects the persistent nature of infection and the large frequency of cases that resist the current interferon (IFN)-based anti-HCV therapeutic regimens. HCV resistance to IFN has been attributed, in part, to the function of the viral nonstructural 5A (NS5A) protein. NS5A from IFN-resistant strains of HCV can repress the PKR protein kinase, a mediator of the IFN-induced antiviral and apoptotic responses of the host cell and a tumor suppressor. Here we examined the relationship between HCV persistence and resistance to IFN therapy. When expressed in mammalian cells, NS5A from IFN-resistant HCV conferred IFN resistance to vesicular stomatitis virus (VSV), which normally is sensitive to the antiviral actions of IFN. NS5A blocked viral double-stranded RNA (dsRNA)-induced PKR activation and phosphorylation of eIF-2alpha in IFN-treated cells, resulting in high levels of VSV mRNA translation. Mutations within the PKR-binding domain of NS5A restored PKR function and the IFN-induced block to viral mRNA translation. The effects due to NS5A inhibition of PKR were not limited to the rescue of viral mRNA translation but also included a block in PKR-dependent host signaling pathways. Cells expressing NS5A exhibited defective PKR signaling and were refractory to apoptosis induced by exogenous dsRNA. Resistance to apoptosis was attributed to an NS5A-mediated block in eIF-2alpha phosphorylation. Moreover, cells expressing NS5A exhibited a transformed phenotype and formed solid tumors in vivo. Disruption of apoptosis and tumorogenesis required the PKR-binding function of NS5A, demonstrating that these properties may be linked to the IFN-resistant phenotype of HCV.  (+info)

Human immunodeficiency virus type 1 tat protein activates transcription factor NF-kappaB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. (18/1374)

The transactivator protein of human immunodeficiency virus type 1 (HIV-1) (Tat) is a powerful activator of nuclear factor-kappaB (NF-kappaB), acting through degradation of the inhibitor IkappaB-alpha (F. Demarchi, F. d'Adda di Fagagna, A. Falaschi, and M. Giacca, J. Virol. 70:4427-4437, 1996). Here, we show that this activity of Tat requires the function of the cellular interferon-inducible protein kinase PKR. Tat-mediated NF-kappaB activation and transcriptional induction of the HIV-1 long terminal repeat were impaired in murine cells in which the PKR gene was knocked out. Both functions were restored by cotransfection of Tat with the cDNA for PKR. Expression of a dominant-negative mutant of PKR specifically reduced the levels of Tat transactivation in different human cell types. Activation of NF-kappaB by Tat required integrity of the basic domain of Tat; previous studies have indicated that this domain is necessary for specific Tat-PKR interaction.  (+info)

Caspase-mediated cleavage of eukaryotic translation initiation factor subunit 2alpha. (19/1374)

Eukaryotic translation initiation factor 2alpha (eIF-2alpha), a target molecule of the interferon-inducible double-stranded-RNA-dependent protein kinase (PKR), was cleaved in apoptotic Saos-2 cells on treatment with poly(I).poly(C) or tumour necrosis factor alpha. This cleavage occurred with a time course similar to that of poly(ADP-ribose) polymerase, a well-known caspase substrate. In addition, eIF-2alpha was cleaved by recombinant active caspase-3 in vitro. By site-directed mutagenesis, the cleavage site was mapped to an Ala-Glu-Val-Asp(300) downward arrowGly(301) sequence located in the C-terminal portion of eIF-2alpha. PKR phosphorylates eIF-2alpha on Ser(51), resulting in the suppression of protein synthesis. PKR-mediated translational suppression was repressed when the C-terminally cleaved product of eIF-2alpha was overexpressed in Saos-2 cells, even though PKR can phosphorylate this cleaved product. These results suggest that caspase-3 or related protease(s) can modulate the efficiency of protein synthesis by cleaving the alpha subunit of eIF-2, a key component in the initiation of translation.  (+info)

Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the alpha subunit of eukaryotic translation initiation factor 2. (20/1374)

The heme-regulated kinase of the alpha subunit of eukaryotic initiation factor 2 (HRI) is activated in rabbit reticulocyte lysate (RRL) in response to a number of environmental conditions, including heme deficiency, heat shock, and oxidative stress. Activation of HRI causes an arrest of initiation of protein synthesis. Recently, we have demonstrated that the heat shock cognate protein Hsc70 negatively modulates the activation of HRI in RRL in response to these environmental conditions. Hsc70 is also known to be a critical component of the Hsp90 chaperone machinery in RRL, which plays an obligatory role for HRI to acquire and maintain a conformation that is competent to activate. Using de novo-synthesized HRI in synchronized pulse-chase translations, we have examined the role of Hsc70 in the regulation of HRI biogenesis and activation. Like Hsp90, Hsc70 interacted with nascent HRI and HRI that was matured to a state which was competent to undergo stimulus-induced activation (mature-competent HRI). Interaction of HRI with Hsc70 was required for the transformation of HRI, as the Hsc70 antagonist clofibric acid inhibited the folding of HRI into a mature-competent conformation. Unlike Hsp90, Hsc70 also interacted with transformed HRI. Clofibric acid disrupted the interaction of Hsc70 with transformed HRI that had been matured and transformed in the absence of the drug. Disruption of Hsc70 interaction with transformed HRI in heme-deficient RRL resulted in its hyperactivation. Furthermore, activation of HRI in response to heat shock or denatured proteins also resulted in a similar blockage of Hsc70 interaction with transformed HRI. These results indicate that Hsc70 is required for the folding and transformation of HRI into an active kinase but is subsequently required to negatively attenuate the activation of transformed HRI.  (+info)

Inhibition of human immunodeficiency virus (HIV-1) replication in SupT1 cells transduced with an HIV-1 LTR-driven PKR cDNA construct. (21/1374)

Current strategies against the human immunodeficiency virus type 1 (HIV-1), including nucleoside analogues and protease inhibitors, have limited effectiveness as shown by the evolution of resistant retroviral strains and the presence of latent HIV-1 reservoirs. Therefore, it is necessary to look beyond anti-retroviral strategies and to rely on the body's immune system to inhibit HIV-1 replication. In this study, we approach the inhibition of HIV-1 replication by upregulation of the antiviral pathway that is natural to mammalian cells. Vectors were constructed which were capable of transferring the antiviral enzyme, p68 kinase (PKR), into target SupT1 lymphoblastoid cells under HIV-1 LTR transcriptional regulation via a retroviral-mediated shuttle system. We report a significant inhibition of HIV-1 replication in HIV-1 LTR-PKR cDNA transduced clones (105-10 : 239 and 106-4 : 560) expressing different PKR levels as measured by inhibition of HIV-1 induced syncytia formation and HIV-1 reverse transcriptase activity. Whereas the expression of PKR in parental vector transduced clone (N2-20P) is down-regulated 48 h after HIV-1 infection, the two transduced clones (one with PKR in the forward orientation and one in the reverse orientation) demonstrate increased PKR expression through 96 h post-infection, concomitant with an increase in eIF-2alpha phosphorylation and an increase in NF-kappaB activity at 72 h postinfection. These results demonstrate that the overexpression of PKR can inhibit HIV-1 replication and confirm the involvement of PKR in the IFN-associated antiviral pathway against HIV-1 infection. Finally, the treatment of the transduced clone 106-4 : 560 with AZT resulted in complete inhibition of HIV-1 replication.  (+info)

Inhibition of replication of reactivated human immunodeficiency virus type 1 (HIV-1) in latently infected U1 cells transduced with an HIV-1 long terminal repeat-driven PKR cDNA construct. (22/1374)

Treatment of human immunodeficiency virus type 1 (HIV-1)-infected individuals with highly active antiretroviral therapy has effectively decreased viral load to undetectable levels. However, efforts to eliminate HIV-1 from these individuals have been unsuccessful, due to the presence of stable, latent viral reservoirs in resting and active CD4(+) T lymphocytes and macrophages. These latent populations have become critical targets in the effort to eradicate HIV-1 from infected individuals. The mechanisms of HIV-1 latency have been studied by using the HIV-1-infected promonocytic cell line U1. The interferon-inducible double-stranded RNA-dependent p68 protein kinase (PKR), a key enzyme in the host-mediated antiviral response, is known to be down-regulated during HIV-1 infection. Therefore, in order to evaluate the role of PKR in the inhibition of replication of reactivated HIV-1 in latently infected U1 cells, we have utilized cDNA constructs containing PKR under the transcriptional control of the HIV-1 long terminal repeat. One PKR-transduced clone, U1/106-4:27, inhibited the tumor necrosis factor alpha (TNF-alpha)-induced replication of HIV-1 by 99% compared to control U1 cells as measured by syncytium formation and HIV-1 p24 antigen enzyme-linked immunosorbent assay. Western blot analysis showed an increase in PKR expression through 96 h postinduction in the U1/106-4:27 clone, concomitant with maximal increases in phosphorylation of the alpha subunit of eukaryotic initiation factor 2 and NF-kappaB activity at 72 h postinduction. These results demonstrate that overexpression of PKR can inhibit the replication of reactivated HIV-1 in latently infected cells and confirm the involvement of PKR in the interferon-associated antiviral pathway against HIV-1 infection. Additionally, treatment of the PKR-transduced U1/106-4:27 clone with the protease inhibitor saquinavir (250 nM) completely inhibited TNF-alpha-induced HIV-1 replication.  (+info)

Inhibitory role of the host apoptogenic gene PKR in the establishment of persistent infection by encephalomyocarditis virus in U937 cells. (23/1374)

Persistent infections by viruses such as HIV-1 and hepatitis B virus can pose long-term health hazards. Because establishment of persistent infections involves close interactions and adjustments in both host and virus, it would be informative to establish a paradigm with which a normally cytolytic viral infection can be easily converted to persistent infection, so that the different stages in developing persistent infection can be examined. Such a model system is described in this paper. Highly cytolytic encephalomyocarditis virus (EMCV) infection was shifted to persistent infection as a result of repressed expression of the double-stranded RNA-dependent protein kinase (PKR) in the promonocytic U937 cells. Because of the apoptogenic potential of PKR, a deficiency of PKR resulted in a delay in virus-induced apoptosis in EMCV-infected U937 cells, allowing the eventual establishment of persistent EMCV infection in these cells (U9K-AV2). That this was a bona fide persistent infection was demonstrated by the ability of infected cells to propagate as long-term virus-shedding cultures; electron microscopy studies showing presence of intracellular EMCV virions and chromatin condensation; detection of virus-induced chromosomal DNA fragmentation and sustained expression of apoptogenic p53 and IL-1beta converting enzyme; and demonstration of active EMCV transcription by reverse transcription-PCR. In addition, a host-virus coevolution was observed in U9K-AV2 cultures over time: U9K-AV2 cells exhibited slower growth rates, resistance to viral super-infection, and cessation of IFN-alpha synthesis, whereas the infectivity of EMCV was drastically attenuated. Finally, data are presented on the suitability of this model to study establishment of persistent infection by other viruses such as Sendai virus and reovirus.  (+info)

Sensitivity of an epstein-barr virus-positive tumor line, Daudi, to alpha interferon correlates with expression of a GC-rich viral transcript. (24/1374)

The exquisite sensitivity of the Burkitt's lymphoma (BL)-derived cell line Daudi to type I interferons has not previously been explained. Here we show that expression of an Epstein-Barr virus (EBV) transcript, designated D-HIT (Y. Gao et al., J. Virol. 71:84-94, 1997), correlates with the sensitivity of different Daudi cell isolates (or that of other EBV-carrying cells, where known) to alpha interferon (IFN-alpha). D-HIT, transcribed from a GC-rich repetitive region (IR4) of the viral genome, is highly structured, responding to RNase digestion in a manner akin to double-stranded RNA. Comparing EBV-carrying BL cell lines with differing responses to IFN-alpha, we found the protein levels of the dsRNA-activated kinase, PKR, to be similar, whereas the levels of the autophosphorylated active form of PKR varied in a manner that correlated with endogenous levels of D-HIT expression. In a classical in vitro kinase assay, addition of either poly(I)-poly(C) or an in vitro-transcribed D-HIT homolog stimulated the autophosphorylation activity of PKR from IFN-alpha-treated cells in both EBV-positive and EBV-negative B lymphocytes. By transfection experiments, these RNAs were shown to reduce cell proliferation and to sensitize otherwise relatively insensitive Raji cells to IFN-alpha. The data lead to a model wherein the D-HIT viral RNA also serves as a possible transcriptional activator of IFN-alpha or cellular genes regulated by this cytokine.  (+info)