Regulation of 11beta-hydroxysteroid dehydrogenase type 2 by diuretics and the renin-angiotensin-aldosterone axis. (33/2149)

In the kidney and colon 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) inactivates cortisol to cortisone, thereby protecting the non-selective mineralocorticoid receptor from cortisol. Deficiency of 11beta-HSD2 results in cortisol-mediated sodium retention and hypertension, suggesting that the physiological regulation of 11beta-HSD2 in mineralocorticoid target tissues may be important in modulating sodium homoeostasis and blood pressure control. Using the human epithelial colon cell line SW-620, reverse transcriptase-polymerase chain reaction and enzyme kinetic analysis indicated expression of only 11beta-HSD2 (Km for cortisol 66 nmol/l). Bradykinin (10(-8) to 10(-12) mol/l), frusemide (10(-4) to 10(-9) mol/l), benzamiloride hydrochloride (10(-5) to 10(-10) mol/l) and atrial natriuretic peptide (10(-6) to 10(-10) mol/l) had no effect on 11beta-HSD2 expression. Using a range of concentrations of angiotensin II (2x10(-8) to 2x10(-5) mol/l) a significant reduction in activity was seen but only at supra-physiological concentrations, [e.g. 2x10(-6) mol/l at 4 h pretreatment: 36.7+/-2.0 pmol cortisone. h-1.mg-1 (mean+/-S.E.M.) compared with 45.1+/-1.7 pmol.h-1.mg-1 in control; P<0.05]. The angiotensin-converting enzyme inhibitors captopril, enalapril, lisinopril, perindopril, quinapril and trandolapril at 10(-7) mol/l, but not fosinopril, significantly increased 11beta-HSD2 activity after pretreatment for 16 or 24 h (P<0.05-P<0.01 compared with control). No effects were seen at 4 h pretreatment. Hydrochlorothiazide (10(-7) mol/l) significantly decreased 11beta-HSD2 activity (P<0.05 compared with control) at 4 h pretreatment. Commonly used diuretics, atrial natriuretic peptide and physiological concentrations of angiotensin II and bradykinin do not alter 11beta-HSD2 activity. In contrast, a series of angiotensin-converting enzyme inhibitors significantly increase 11beta-HSD2 activity in vitro. This may explain how intrarenal infusions of angiotensin-converting enzyme inhibitors increase renal sodium excretion independent of circulating concentrations of angiotensin II. The interaction between angiotensin-converting enzyme inhibitors and 11beta-HSD2 may be an additional mechanism by which the former can lower blood pressure.  (+info)

Direct intrauterine fetal therapy in a case of bronchopulmonary sequestration associated with non-immune hydrops fetalis. (34/2149)

Bronchopulmonary sequestration associated with non-immune hydrops fetalis is generally recognized as a uniformly fatal fetal condition without fetal surgical intervention. We describe here the first case of such a condition treated successfully with direct intrauterine fetal therapy using digoxin and frusemide.  (+info)

Residues in transmembrane domains I and II determine gamma-aminobutyric acid type AA receptor subtype-selective antagonism by furosemide. (35/2149)

GABAA receptors in cerebellar granule cells are unique in expressing a subtype containing the alpha6 subunit. This receptor subtype has high affinity for GABA and produces a degree of tonic inhibition on cerebellar granule cells, modulating the firing of these cells via spillover of GABA from GABAergic synapses. This receptor subtype also has selective affinity for the diuretic furosemide over receptors containing other alpha-subunits. Furosemide exhibits approximately 100-fold selectivity for alpha6-containing receptors over alpha1-containing receptors. By making alpha1/alpha6 chimeras we have identified a transmembrane region (209-279) responsible for the high furosemide sensitivity of alpha6beta3gamma2s receptors. Within the alpha1 transmembrane region, a single amino acid was identified that when mutated from threonine to isoleucine, increased furosemide sensitivity by 20-fold. We demonstrate the beta-subunit selectivity of furosemide to be due to asparagine 265 in the beta2 and beta3 transmembrane-domain II similar to that observed with potentiation by the anticonvulsant loreclezole. We also show that Ile in transmembrane-domain I accounts for the increased GABA sensitivity observed at alpha6beta3gamma2s compared with alpha1beta3gamma2s receptors, but did not affect direct activation by pentobarbital or potentiation by the benzodiazepine flunitrazepam. Location of these residues within transmembrane domains leads to speculation that they may be involved in the channel-gating mechanism conferring increased receptor activation by GABA, in addition to conferring furosemide sensitivity.  (+info)

Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels. (36/2149)

A variety of direct and indirect techniques have revealed the existence of ATP-sensitive potassium (KATP) channels in the inner membranes of mitochondria. The molecular identity of these mitochondrial KATP (mitoKATP) channels remains unclear. We used a pharmacological approach to distinguish mitoKATP channels from classical, molecularly defined cardiac sarcolemmal KATP (surfaceKATP) channels encoded by the sulfonylurea receptor SUR2A and the pore-forming subunit Kir6.2. SUR2A and Kir6.2 were expressed in human embryonic kidney (HEK)293 cells, and their activities were measured by patch-clamp recordings of membrane current. SurfaceKATP channels are activated potently by 100 microM pinacidil but only weakly by 100 microM diazoxide; in addition, they are blocked by 10 microM glibenclamide, but are insensitive to 500 microM 5-hydroxydecanoate. This pharmacology, which was confirmed with patch-clamp recordings in intact rabbit ventricular myocytes, contrasts with that of mitoKATP channels as indexed by flavoprotein oxidation. MitoKATP channels in myocytes are activated equally by 100 microM diazoxide and 100 microM pinacidil. In contrast to its lack of effect on surfaceKATP channels, 5-hydroxydecanoate is an effective blocker of mitoKATP channels. Glibenclamide's effects on mitoKATP channels are difficult to assess, because it independently activates flavoprotein fluorescence, consistent with a previously described primary uncoupling effect. Confocal imaging of the subcellular distribution of expressed fluorescent Kir6.2 in HEK cells and in myocytes revealed no targeting of mitochondrial membranes. The differences in drug sensitivity and subcellular localization indicate that mitoKATP channels are distinct from surface KATP channels at a molecular level.  (+info)

Analysis of urine samples containing cardiovascular drugs by micellar liquid chromatography with fluorimetric detection. (37/2149)

A simple direct injection chromatographic procedure with fluorimetric detection is successfully applied to the determination of mixtures of 4 diuretics (amiloride, bendroflumethiazide, piretanide, and triamterene) and 6 beta-blockers (acebutolol, atenolol, labetalol, metoprolol, nadolol, and propranolol), which are usually administered in combinations for the treatment of hypertension, in urine samples. The procedure makes use of C18 columns and micellar mobile phases of sodium dodecyl sulphate (SDS), propanol, and phosphate buffer at pH 3. The adequate resolution of most drugs is obtained with a chemometrics approach where the retention is modeled as a first step using the retention factors in only 5 mobile phases. Afterward, an optimization criterion that takes into account the position and shape of the chromatographic peaks is applied. A mobile phase of 0.11M SDS--8% propanol could resolve mixtures of 8 drugs and was adequate for the analysis of the combinations of diuretic and beta-blocker usually prescribed. However, a mobile phase of larger elution strength, such as 0.15M SDS--15% propanol, is preferred for the analysis of mixtures of amiloride-metoprolol, amiloride-labetalol, and triameterene-propranolol. The method is sensitive enough for the routine analysis of diuretics and beta-blockers at therapeutic urine levels with limits of detection in the 0.5-28-ng/mL range. Urinary excretion studies show that the detection of most drugs is possible up to 24-72 h after their ingestion.  (+info)

Enthacrynic and acid effects on inner wall pores in living monkeys. (38/2149)

PURPOSE: The influence of the inner wall of Schlemm's canal on aqueous outflow facility remains poorly understood. We examined the relationship between inner wall pore characteristics and outflow facility in living primate eyes in which facility had been pharmacologically increased by ethacrynic acid (ECA) infusion and in contralateral control eyes. METHODS: Outflow facility (two-level constant pressure perfusion) was measured in eight pairs of living monkey eyes before and after administration of a bolus dose of either 0.125 mM ECA or vehicle. After exsanguination, eyes were fixed in situ under constant-pressure conditions (mean fixation pressure approximately 19 mm Hg). The density and diameter of inner wall pores and the number and area of platelet aggregates on the inner wall of Schlemm's canal were measured by scanning electron microscopy. RESULTS: In ECA-treated eyes, outflow facility increased 63% (P < 0.0001), intracellular pore density decreased 46% (P = 0.0094), intracellular pore size increased 27% (P = 0.049), platelet aggregate density increased 158% (P < 0.0001), and area covered by platelets increased 210% (P = 0.012) relative to contralateral controls. Although the average density and size of intercellular pores were essentially unaffected by ECA, an increased density of large (> or = 1.90 microm) intercellular pores was seen in ECA-treated eyes. The density of intracellular pores increased with the duration of fixative perfusion. Other than a weak negative correlation between outflow facility and intracellular pore density in ECA-treated eyes (P = 0.052), facility was not correlated with inner wall pore features. CONCLUSIONS: Our data are most consistent with a scenario in which ECA promotes formation of large intercellular pores in the inner wall of Schlemm's canal, which are then masked by platelet aggregates. Masking of intercellular pores, combined with fixation-induced alteration of inner wall pore density, greatly complicates attempts to relate facility to inner wall structure and suggests that in vivo pore density is smaller than in fixed tissue. Additionally, facility-influencing effects of ECA on the juxtacanalicular tissue cannot be excluded.  (+info)

Effects of ethacrynic acid on Schlemm's canal inner wall and outflow facility in human eyes. (39/2149)

PURPOSE: The role of the inner wall of Schlemm's canal in determining aqueous outflow facility is poorly understood. To quantify the relationship between inner wall pore characteristics and aqueous outflow facility in human eyes, both control eyes and eyes in which facility had been pharmacologically increased by ethacrynic acid (ECA) infusion were studied. METHODS: Outflow facility was measured in enucleated human eyes before and after delivery of 0.25 mM ECA (one eye of each of 6 pairs) or 2.5 mM ECA (one eye of each of 13 pairs). ECA, and vehicle in contralateral eyes, was delivered into Schlemm's canal by retroperfusion, thereby largely avoiding drug exposure to the trabecular meshwork. After facility measurement, eyes were fixed under conditions of either constant pressure (physiological intraocular pressure, 13 pairs) or "equal flow" (6 pairs) and were microdissected to expose the inner wall of Schlemm's canal. The density and diameter of intercellular and intracellular inner wall pores were measured using scanning electron microscopy. RESULTS: Retroperfusion with 2.5 mM ECA increased facility by 73% (P < 0.001), whereas 0.25 mM ECA increased facility by 19% (not statistically significant). The density of intercellular pores in the inner wall of Schlemm's canal was increased by 520% in 2.5 mM ECA-retroperfused eyes (P < 0.00004), whereas intracellular pore density remained approximately constant. Large pores (size > or = 1.1 microm) were particularly enhanced in ECA retroperfused eyes. The net change in facility due to ECA was not correlated with changes in pore density or other inner wall pore statistics. CONCLUSIONS: Our data are most consistent with a model in which pores in the inner wall of Schlemm's canal indirectly influence facility. However, measured changes in facility due to changes in inner wall properties did not agree with quantitative predictions of the pore funneling theory, suggesting that changes in facility may instead be due to gel leakage from the extracellular spaces of the juxtacanalicular tissue. More definitive experiments are required to confirm this hypothesis.  (+info)

Acute and chronic renal effects of recombinant human TGF-beta2 in the rat. (40/2149)

The expression of transforming growth factor-beta (TGF-beta) correlates with the incidence of renal glomerular and interstitial injury, however, nothing is known of the effect of these proteins on renal hemodynamics. This study examines the renal hemodynamic and morphologic effects of recombinant human TGF-beta2 in normal male Sprague Dawley rats. Acute infusion of TGF-beta (1.2 microg/kg per min) induced no hemodynamic changes, except for a modest though significant fall in mean arterial pressure. Administering TGF-beta2 at varying doses (20, 100, and 400 microg/kg) for 9 wk caused modest increases in systolic BP and proteinuria and minimal tubular interstitial fibrosis, however, renal hemodynamic end points were not significantly altered. TGF-beta2 (800 microg/kg) was also administered to volume-depleted rats for 7 consecutive days. In contrast to the findings in volume-replete animals, administration of TGF-beta2 to volume-depleted rats caused a marked reduction in GFR and medullary blood flow. Histologic fibrosis of the medullary vasa recta and cortical interstitium was seen, but glomeruli were unaffected. Thus, acute and short-term chronic TGF-beta2 administration did not induce major renal changes in the volume-replete state, however, TGF-beta2 combined with volume depletion caused medullary hypoperfusion and reduced GFR.  (+info)