Selective horizontal dysmetropsia following prestriate lesion. (1/255)

We describe a patient (P.S.) who, following a right prestriate lesion, reported that objects in the left visual field appeared distorted and smaller than those on the right. Other aspects of visual processing were remarkably unaffected. We carried out a series of size comparison tests using simple or complex stimuli and requiring different types of behavioural responses. We found that P.S. significantly underestimated the size of stimuli presented in her left visual field. When comparison tasks involved stimuli placed along the vertical axis or in the right visual field, P.S. performed well. The vertical and horizontal components of size distortion were found to be differentially affected. We conclude that size processing may be dissociated from other aspects of visual processing, such as form or colour processing, and depends critically on part of the occipital, prestriate areas (Brodmann areas 18-19).  (+info)

Structured Interview for Assessing Perceptual Anomalies (SIAPA). (2/255)

Clinical descriptions of perceptual and attentional anomalies in schizophrenia emphasize phenomena such as flooding, or inundation, by sensory stimuli. A failure of sensory "gating" mechanisms in the brain is hypothesized to account for these symptoms, and this hypothesis has led to a marked interest in their putative psychophysiological substrates. However, there are no systematic analyses of the phenomenology of these perceptual experiences, nor has the hypothesized connection between the clinical phenomena and their reported psychophysiological substrates been tested. In this investigation, a structured interview instrument was developed to measure perceptual anomalies as distinct from hallucinations and to determine their prevalence across sensory modalities in schizophrenia in 67 schizophrenia subjects and 98 normal controls. The instrument includes Likert ratings of hypersensitivity, inundation, and selective attention to external sensory stimuli. Good interrater agreement, determined from interviews, was obtained. Schizophrenia subjects had significantly higher auditory, visual, and combined scores (i.e., across all modalities) than normal controls did, indicating significantly more perceptual anomalies. For the schizophrenia group, the prevalence of auditory and visual anomalies was significantly greater than the other sensory modalities. The data indicate that the putative phenomenological correlates of sensory gating may be reliably measured and tested with the Structured Interview for Assessing Perceptual Anomalies.  (+info)

Optimal spatial frequencies for discrimination of motion direction in optic flow patterns. (3/255)

Spatial frequency tuning functions were measured for direction discrimination of optic flow patterns. Three subjects discriminated the direction of a curved motion path using computer generated optic flow patterns composed of randomly positioned dots. Performance was measured with unfiltered patterns and with patterns that were spatially filtered across a range of spatial frequencies (center spatial frequencies of 0.4, 0.8, 1.6, 3.2, 6.4, and 9.6 c/deg). The same subjects discriminated the direction of uniform, translational motion on the fronto-parallel plane. The uniform motion patterns were also composed of randomly positioned dots, that were either unfiltered or filtered with the same spatial filters used for the optic flow patterns. The peak spatial frequency was the same for both the optic flow and uniform motion patterns. For both types of motion, a narrow band (1.5 octaves) of optimal spatial frequencies was sufficient to support the same level of performance as found with unfiltered, broadband patterns. Additional experiments demonstrated that the peak spatial frequency for the optic flow patterns varies with mean image speed in the same manner as has been reported for moving sinusoidal gratings. These findings confirm the hypothesis that the outputs of the local motion mechanisms thought to underlie the perception of uniform motion provide the inputs to, and constrain the operation of, the mechanism that processes self motion from optic flow patterns.  (+info)

Revisiting motion repulsion: evidence for a general phenomenon? (4/255)

Previous studies have found large misperceptions when subjects are reporting the perceived angle between two directions of motion moving transparently at an acute angle, the so called motion repulsion. While these errors have been assumed to be caused by interactions between the two directions present, we reassessed these earlier measurements taking into account recent findings about directional misperceptions affecting the perception of single motion (reference repulsion). While our measurements confirm that errors in directional judgments of transparent motions can indeed be as big as 22 degrees we find that motion repulsion, i.e. the interaction between two directions, contributes at most about 7 degrees to these errors. This value is comparable to similar repulsion effects in orientation perception and stereoscopic depth perception, suggesting that they share a common neural basis. Our data further suggest that fast time scale adaptation and/or more general interactions between neurons contribute to motion repulsion while tracking eye movements play little or no role. These findings should serve as important constraints for models of motion perception.  (+info)

Stereoscopic (cyclopean) motion sensing. (5/255)

This paper reviews literature on the motion processing of dynamic change in binocular disparity, called stereoscopic (cyclopean) motion. Studies investigating the visual processing of stereoscopic motion in the Z-axis, stereoscopic motion in the X/Y plane, and cyclopean motion are discussed. It is concluded that stereoscopic motion is processed by a motion-sensing system composed of special-purpose mechanisms that function like low-level motion sensors. For animals with binocular vision, low-level motion processing may involve, at least in part, stereoscopic processing.  (+info)

Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. (6/255)

A flash that is presented adjacent to a continuously moving bar is perceived to lag behind the bar. One explanation for this phenomenon is that there is a difference in the persistence of the flash and the bar. Another explanation is that the visual system compensates for the neural delays of processing visual motion information, such as the moving bar, by spatially extrapolating the bar's perceived location forward in space along its expected trajectory. Two experiments demonstrate that neither of these models is tenable. The first experiment masked the flash one video frame after its presentation. The flash was still perceived to lag behind the bar, suggesting that a difference in the persistence of the flash and bar, does not cause the apparent offset. The second experiment employed unpredictable changes in the velocity of the bar including an abrupt reversal, disappearance, acceleration, and deceleration. If the extrapolation model held, the bar would continue to be extrapolated in accordance with its initial velocity until the moment of an abrupt velocity change. The results were inconsistent with this prediction, suggesting that there is little or no spatial compensation for the neural delays of processing moving objects. The results support a new model of temporal facilitation for moving objects whereby the apparent flash lag is due to a latency advantage for moving over flashed stimuli.  (+info)

A systematic study of visual extinction. Between- and within-field deficits of attention in hemispatial neglect. (7/255)

Mechanisms of visual extinction were investigated in four patients with right hemisphere damage using a partial report paradigm. Different shapes (star or triangle) were displayed in one, two or four possible locations so that double simultaneous stimuli occurred either across the two hemifields or within the same hemifield. Patients attended either to the location (right, left or both), number (one, two or four) or shape (no, one or two stars among the shapes presented) of stimuli in three separate experiments using the same displays and exposure duration. Reporting the location (Experiment 1) produced marked contralesional extinction, although reaction time was delayed compared with unilateral right trials, indicating unconscious processing. Reaction time was also delayed on correct bilateral and unilateral left trials. In contrast, enumerating stimuli (Experiment 2) caused no significant contralesional extinction on bilateral displays and reaction time was similar on bilateral and unilateral right trials, suggesting that information from both fields was grouped in a single numerable percept in this task. However, patients often detected only one of two stimuli within the left field. Whereas similarity of shapes improved localization and did not affect enumeration, identifying stars among shapes (Experiment 3) revealed a severe inability to detect two similar targets between hemifields as well as within each of the hemifields. Distracting triangles were generally less detrimental to the perception of a concurrent target on either side, but slowed the reaction time regardless of whether they were in the same or the opposite field. Relative difficulty in ignoring distractors correlated with neglect severity on a cancellation task, and was most prominent in one patient with a large amount of frontal damage. These findings suggest that (i) allocation of attention to identical stimuli can be modulated by task demand; (ii) enumerating a small set of items across fields may not require attending to individual stimuli but relies on preattentive subitizing ability, as found in normal subjects; (iii) location information may be critical for attentional mechanisms subserved by the parietal cortex and pathological competition for awareness in extinction; (iv) extinction entails a bilateral deficit in attending to two concurrent similar targets when their features must be identified; and (v) the relevance of the stimuli can modulate the distribution of attention, possibly through frontal top-down control. These findings are consistent with recent neurophysiological evidence of parietal and frontal attentional influences on ventral visual pathways.  (+info)

Direction biasing by brief apparent motion stimuli. (8/255)

The perceived direction of a motion step (probe stimulus) can be influenced by an earlier motion step or a brief motion sweep containing a series of steps (biasing stimulus). Depending upon experimental conditions, the biasing of the direction of the probe step (a phase shift of 180 degrees +/-Phi) by a biasing stimulus which precedes it by approximately 250 ms can either increase (positive filter biasing) or decrease (negative filter biasing) the tendency to see the probe move in the biasing direction as computed with a motion filter with a biphasic temporal impulse response. In a series of experiments it was found that biasing motions traversing 90 degrees of phase angle in fewer than six steps in less than 100 ms produced positive filter biasing. Also, biasing of the probe direction could be dissociated from the consciously reported direction of the biasing stimulus, and it did not occur when the probe preceded rather than followed the biasing stimulus. A biasing sweep containing more than six steps traversing 90 degrees or a sweep traversing 270 degrees produced negative filter biasing. Perceptual fusion of the steps of the sweep was not a necessary condition for obtaining negative filter biasing. In general, the negative filter biasing effects were found to be the most pervasive for the conditions investigated, and they are suggestive of a direction-specific, adaptation-like (gain-control) process in first-order motion filters. The exception to the negative biasing rule was found only with biasing stimuli which were short in duration or distance spanned.  (+info)