Safety and pharmacokinetics of abacavir (1592U89) following oral administration of escalating single doses in human immunodeficiency virus type 1-infected adults. (1/529)

Abacavir (1592U89) is a nucleoside analog reverse transcriptase inhibitor that has been demonstrated to have selective activity against human immunodeficiency virus (HIV) in vitro and favorable safety profiles in mice and monkeys. A phase I study was conducted to evaluate the safety and pharmacokinetics of abacavir following oral administration of single escalating doses (100, 300, 600, 900, and 1,200 mg) to HIV-infected adults. In this double-blind, placebo-controlled study, subjects with baseline CD4+ cell counts ranging from < 50 to 713 cells per mm3 (median, 315 cells per mm3) were randomly assigned to receive abacavir (n = 12) or placebo (n = 6). The bioavailability of the caplet formulation relative to that of the oral solution was also assessed with the 300-mg dose. Abacavir was well tolerated by all subjects; mild to moderate asthenia, abdominal pain, headache, diarrhea, and dyspepsia were the most frequently reported adverse events, and these were not dose related. No significant clinical or laboratory abnormalities were observed throughout the study. All doses resulted in mean abacavir concentrations in plasma that exceeded the mean 50% inhibitory concentration (IC50) for clinical HIV isolates in vitro (0.07 microgram/ml) for almost 3 h. Abacavir was rapidly absorbed following oral administration, with the time to the peak concentration in plasma occurring at 1.0 to 1.7 h postdosing. Mean maximum concentrations in plasma (Cmax) and the area under the plasma concentration-time curve from time zero to infinity (AUC0-infinity) increased slightly more than proportionally from 100 to 600 mg (from 0.6 to 4.7 micrograms/ml for Cmax; from 1.0 to 15.7 micrograms.h/ml for AUC0-infinity) but increased proportionally from 600 to 1,200 mg (from 4.7 to 9.6 micrograms/ml for Cmax; from 15.7 to 32.8 micrograms.h/ml for AUC0-infinity. The elimination of abacavir from plasma was rapid, with an apparent elimination half-life of 0.9 to 1.7 h. Abacavir was well absorbed, with a relative bioavailability of the caplet formulation of 96% versus that of an oral solution (drug substance in water). In conclusion, this study showed that abacavir is safe and is well tolerated by HIV-infected subjects and demonstrated predictable pharmacokinetic characteristics when it was administered as single oral doses ranging from 100 to 1,200 mg.  (+info)

Safety and single-dose pharmacokinetics of abacavir (1592U89) in human immunodeficiency virus type 1-infected children. (2/529)

Abacavir (formerly 1592U89) is a potent 2'-deoxyguanosine analog reverse transcriptase inhibitor that has been demonstrated to have a favorable safety profile in initial clinical trials with adults with human immunodeficiency virus (HIV) type 1 infection. A phase I study was conducted to evaluate the pharmacokinetics and safety of abacavir following the administration of two single oral doses (4 and 8 mg/kg of body weight) to 22 HIV-infected children ages 3 months to 13 years. Plasma was collected for analysis at predose and at 0.5, 1, 1.5, 2, 2.5, 3, 5, and 8 h after the administration of each dose. Plasma abacavir concentrations were determined by high-performance liquid chromatography, and data were analyzed by noncompartmental methods. Abacavir was well tolerated by all subjects. The single abacavir-related adverse event was rash, which occurred in 2 of 22 subjects. After administration of the oral solution, abacavir was rapidly absorbed, with the time to the peak concentration in plasma occurring within 1.5 h postdosing. Pharmacokinetic parameter estimates were comparable among the different age groups for each dose level. The mean maximum concentration in plasma (Cmax) and the mean area under the curve from time zero to infinity (AUC0-infinity) increased by 16 and 45% more than predicted, respectively, as the abacavir dose was doubled from 4 to 8 mg/kg (Cmax increased from 1.69 to 3.94 micrograms/ml, and AUC0-infinity increased from 2.82 to 8.09 micrograms.h/ml). Abacavir was rapidly eliminated, with a mean elimination half-life of 0.98 to 1.13 h. The mean apparent clearance from plasma decreased from 27.35 to 18.88 ml/min/kg as the dose increased. Neither body surface area nor creatinine clearance were correlated with pharmacokinetic estimates at either dose. The extent of exposure to abacavir appears to be slightly lower in children than in adults, with the comparable unit doses being based on body weight. In conclusion, this study showed that abacavir is safe and well tolerated in children when it is administered as a single oral dose of 4 or 8 mg/kg.  (+info)

Novel four-drug salvage treatment regimens after failure of a human immunodeficiency virus type 1 protease inhibitor-containing regimen: antiviral activity and correlation of baseline phenotypic drug susceptibility with virologic outcome. (3/529)

Twenty human immunodeficiency virus-infected patients experiencing virologic failure of an indinavir- or ritonavir-containing treatment regimen were evaluated in a prospective, open-label study. Subjects received nelfinavir, saquinavir, abacavir, and either another nucleoside analog (n=10) or nevirapine (n=10). Patients treated with the nevirapine-containing regimen experienced significantly greater virologic suppression at week 24 than those not treated with nevirapine (P=.04). Baseline phenotypic drug susceptibility was strongly correlated with outcome in both treatment arms. Subjects with baseline virus phenotypically sensitive to 2 or 3 drugs in the salvage regimen experienced significantly greater virus load suppression than those with baseline virus sensitive to 0 or 1 drug (median week-24 change=-2.24 log and -0.35 log, respectively; P=.01). In conclusion, non-nucleoside reverse transcriptase inhibitors may represent a potent drug in salvage therapy regimens after failure of an indinavir or ritonavir regimen. Phenotypic resistance testing may provide a useful tool for selecting more effective salvage regimens.  (+info)

Functional characterization of a human purine-selective, Na+-dependent nucleoside transporter (hSPNT1) in a mammalian expression system. (4/529)

Nucleosides and nucleoside analogs are actively transported in the human kidney. With the recent cloning of a purine-selective, Na+-dependent, nucleoside transporter (hSPNT1, also termed hCNT2) from human kidney, it is now possible to study the interaction of nucleosides and nucleoside analogs with this transport protein and gain a more detailed knowledge of the underlying mechanisms of nucleoside transport in the human kidney. In this study we examined the substrate selectivity of hSPNT1 for nucleosides and nucleoside analogs. We determined that the naturally occurring nucleosides adenosine, inosine, and uridine are substrates for this carrier, whereas thymidine is not. The nucleoside analogs (0.5 mM) 2', 3'-dideoxyadenosine; 2',3'-dideoxyinosine; and 2-chloro-2'deoxyadenosine (2CdA), significantly inhibited the uptake of [3H]inosine in HeLa cells transiently transfected with hSPNT1. However, there was no significant Na+-dependent uptake of [3H]2', 3'-dideoxyinosine or [3H]2CdA in the transfected cells, suggesting that these nucleoside analogs are not permeants of hSPNT1. Interestingly, 2CdA was considerably less potent in inhibiting [3H]inosine uptake in HeLa cells expressing hSPNT1 than in cells expressing the rat homolog rSPNT (IC50 = 371 microM versus 13.8 microM), suggesting that there may be notable species differences in the kinetic interactions of some nucleoside analogs with purine- selective nucleoside transporters.  (+info)

Comparative fitness of multi-dideoxynucleoside-resistant human immunodeficiency virus type 1 (HIV-1) in an In vitro competitive HIV-1 replication assay. (5/529)

We examined whether human immunodeficiency virus type 1 (HIV-1) fitness was altered upon the acquisition of a set or subset of five mutations (A62V, V75I, F77L, F116Y, and Q151M) in the pol gene, which confers resistance to multiple dideoxynucleosides (MDR), as well as the zidovudine resistance-associated mutation T215Y, using a competitive HIV-1 replication assay in a setting of an HXB2D genetic background. Target H9 cells were exposed to a 50:50 mixture of paired infectious molecular clones, and HIV-1 in the culture supernatant was transmitted to new cultures every 7 to 10 days. The polymerase-encoding region of the virus was sequenced at various time points, and the relative proportion of the two viral populations was determined. In the absence of drugs, the comparative order for replicative fitness was HIV-162/75/77/116/151 > HIV-177/116/151 > HIV-1151 > wild-type HIV-1 (HIV-1wt) > HIV-175/77/116/151 > HIV-1151/215 > HIV-1215. In the presence of zidovudine or didanosine, the order was HIV-162/75/77/116/151 > HIV-177/116/151 > HIV-175/77/116/151 > HIV-1151 > HIV-1215. HIV-1215S(TCC), a putative intermediate infectious clone for HIV-1215, replicated comparably to HIV-1wt, while two putative intermediates for HIV-1151 [HIV-1151L(CTG) and HIV-1151K(AAG)] replicated much less efficiently than HIV-1wt and HIV-1151, suggesting that for HIV-1151 to develop, two base substitutions are likely to occur concurrently or within a short interval. These data may illustrate the molecular basis by which HIV-1151 emerges much less frequently than HIV-1215. The present data also demonstrate that several MDR HIV-1 variants are more fit than HIV-1wt in the absence of drugs and that resistance-associated mutations and drug pressure are critical variates for HIV-1 fitness.  (+info)

Single-dose pharmacokinetics and safety of abacavir (1592U89), zidovudine, and lamivudine administered alone and in combination in adults with human immunodeficiency virus infection. (6/529)

Abacavir (1592U89), a nucleoside reverse transcriptase inhibitor with in vitro activity against human immunodeficiency virus type-1 (HIV-1), has been evaluated for efficacy and safety in combination regimens with other nucleoside analogs, including zidovudine (ZDV) and lamivudine (3TC). To evaluate the potential pharmacokinetic interactions between these agents, 15 HIV-1-infected adults with a median CD4(+) cell count of 347 cells/mm3 (range, 238 to 570 cells/mm3) were enrolled in a randomized, seven-period crossover study. The pharmacokinetics and safety of single doses of abacavir (600 mg), ZDV (300 mg), and 3TC (150 mg) were evaluated when each drug was given alone or when any two or three drugs were given concurrently. The concentrations of all drugs in plasma and the concentrations of ZDV and its 5'-glucuronide metabolite, GZDV, in urine were measured for up to 24 h postdosing, and pharmacokinetic parameter values were calculated by noncompartmental methods. The maximum drug concentration (Cmax), the area under the concentration-time curve from time zero to infinity (AUC0-infinity), time to Cmax (Tmax), and apparent elimination half-life (t1/2) of abacavir in plasma were unaffected by coadministration with ZDV and/or 3TC. Coadministration of abacavir with ZDV (with or without 3TC) decreased the mean Cmax of ZDV by approximately 20% (from 1.5 to 1.2 microg/ml), delayed the median Tmax for ZDV by 0.5 h, increased the mean AUC0-infinity for GZDV by up to 40% (from 11.8 to 16.5 microg. h/ml), and delayed the median Tmax for GZDV by approximately 0.5 h. Coadministration of abacavir with 3TC (with or without ZDV) decreased the mean AUC0-infinity for 3TC by approximately 15% (from 5.1 to 4.3 microg. h/ml), decreased the mean Cmax by approximately 35% (from 1.4 to 0.9 microg/ml), and delayed the median Tmax by approximately 1 h. While these changes were statistically significant, they are similar to the effect of food intake (for ZDV) or affect an inactive metabolite (for GZDV) or are relatively minor (for 3TC) and are therefore not considered to be clinically significant. No significant differences were found in the urinary recoveries of ZDV or GZDV when ZDV was coadministered with abacavir. There was no pharmacokinetic interaction between ZDV and 3TC. Mild to moderate headache, nausea, lymphadenopathy, hematuria, musculoskeletal chest pain, neck stiffness, and fever were the most common adverse events reported by those who received abacavir. Coadministration of ZDV or 3TC with abacavir did not alter this adverse event profile. The three-drug regimen was primarily associated with gastrointestinal events. In conclusion, no clinically significant pharmacokinetic interactions occurred between abacavir, ZDV, and 3TC in HIV-1-infected adults. Coadministration of abacavir with ZDV or 3TC produced mild changes in the absorption and possibly the urinary excretion characteristics of ZDV-GZDV and 3TC that were not considered to be clinically significant. Coadministration of abacavir with ZDV and/or 3TC was generally well tolerated and did not produce unexpected adverse events.  (+info)

Improved DNA sequencing accuracy and detection of heterozygous alleles using manganese citrate and different fluorescent dye terminators. (7/529)

The use of dideoxynucleotide triphosphates labeled with different fluorescent dyes (dye terminators) is the most versatile method for automated DNA sequencing. However, variation in peak heights reduces base-calling accuracy and limits heterozygous allele detection, favoring use of dye-labeled primers for this purpose. We have discovered that the addition of a manganese salt to the PE Applied Biosystems dye-terminator sequencing kits overcomes these limitations for the older rhodamine dyes as well as the more recent dichloro-rhodamine dyes (dRhodamine and BigDyes). Addition of manganese to reactions containing dRhodamine-based dye terminators produced the highest base-calling accuracy. This combination resulted in the most uniform electropherogram profiles, superior to those produced by BigDye terminators and published for dye primers, and facilitated detection of heterozygous alleles.  (+info)

A family of insertion mutations between codons 67 and 70 of human immunodeficiency virus type 1 reverse transcriptase confer multinucleoside analog resistance. (8/529)

To investigate the occurrence of multinucleoside analog resistance during therapy failure, we surveyed the drug susceptibilities and genotypes of nearly 900 human immunodeficiency virus type 1 (HIV-1) samples. For 302 of these, the 50% inhibitory concentrations of at least four of the approved nucleoside analogs had fourfold-or-greater increases. Genotypic analysis of the reverse transcriptase (RT)-coding regions from these samples revealed complex mutational patterns, including the previously recognized codon 151 multidrug resistance cluster. Surprisingly, high-level multinucleoside resistance was associated with a diverse family of amino acid insertions in addition to "conventional" point mutations. These insertions were found between RT codons 67 and 70 and were commonly 69Ser-(Ser-Ser) or 69Ser-(Ser-Gly). Treatment history information showed that a common factor for the development of these variants was AZT (3'-azido-3'-deoxythymidine, zidovudine) therapy in combination with 2',3'-dideoxyinosine or 2',3'-dideoxycytidine, although treatment patterns varied considerably. Site-directed mutagenesis studies confirmed that 69Ser-(Ser-Ser) in an AZT resistance mutational background conferred simultaneous resistance to multiple nucleoside analogs. The insertions are located in the "fingers" domain of RT. Modelling the 69Ser-(Ser-Ser) insertion into the RT structure demonstrated the profound direct effect that this change is likely to have in the nucleoside triphosphate binding site of the enzyme. Our data highlight the increasing problem of HIV-1 multidrug resistance and underline the importance of continued resistance surveillance with appropriate, sufficiently versatile genotyping technology and phenotypic drug susceptibility analysis.  (+info)