In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. (9/8350)

The widely used anticancer prodrug cyclophosphamide (CPA) is activated in liver by a 4-hydroxylation reaction primarily catalyzed by cytochrome P-4502B and P-4502C enzymes. An alternative metabolic pathway involves CPA N-dechloroethylation to yield chloroacetaldehyde (CA), a P-4503A-catalyzed deactivation/neurotoxication reaction. The in vivo modulation of these alternative, competing pathways of P-450 metabolism was investigated in pharmacokinetic studies carried out in the rat model. Peak plasma concentrations (Cmax) for 4-OH-CPA and CA were increased by 3- to 4-fold, and apparent plasma half-lives of both metabolites were correspondingly shortened in rats pretreated with phenobarbital (PB), an inducer of P-4502B and P-4503A enzymes. However, PB had no net impact on the extent of drug activation or its partitioning between these alternative metabolic pathways, as judged from AUC values (area-under-the-plasma concentration x time curve) for 4-OH-CPA and CA. The P-4503A inhibitor troleandomycin (TAO) decreased plasma Cmax and AUC of CA (80-85% decrease) without changing the Cmax or AUC of 4-OH-CPA in uninduced rats. In PB-induced rats, TAO decreased AUCCA by 73%, whereas it increased AUC4-OH-CPA by 93%. TAO thus selectively suppresses CPA N-dechloroethylation, thereby increasing the availability of drug for P-450 activation via 4-hydroxylation. By contrast, dexamethasone, a P-4503A inducer and antiemetic widely used in patients with cancer, stimulated large, undesirable increases in the Cmax and AUC of CA (8- and 4-fold, respectively) while reducing the AUC of the 4-hydroxylation pathway by approximately 60%. Tumor excision/in vitro colony formation and tumor growth delay assays using an in vivo 9L gliosarcoma solid tumor model revealed that TAO suppression of CPA N-dechloroethylation could be achieved without compromising the antitumor effect of CPA. The combination of PB with TAO did not, however, enhance the antitumor activity of CPA, despite the approximately 2-fold increase in AUC4-OH-CPA, suggesting that other PB-inducible activities, such as aldehyde dehydrogenase, may counter this increase through enhanced deactivation of the 4-hydroxy metabolite. Together, these studies demonstrate that the P-4503A inhibitor TAO can be used to effectively modulate CPA metabolism and pharmacokinetics in vivo in a manner that decreases the formation of toxic metabolites that do not contribute to antitumor activity.  (+info)

Macrophage plasminogen activator: induction by asbestos is blocked by anti-inflammatory steroids. (10/8350)

Intraperitoneal injection of asbestos fibres into mice induces the formation of exudates containing macrophages that produce plasminogen activator. Like-wise, in vitro addition of asbestos to macrophage cultures stimulates plasminogen activator secretion; the synthesis and secretion of lysozyme and lysosomal enzymes are not changed under these conditions. The enhanced secretion of plasminogen activator by macrophages exposed to asbestos is suppressed by low concentrations of anti-inflammatory steroids.  (+info)

Purification of two dexamethasone-binding proteins from rat-liver cytosol. (11/8350)

Two dexamethasone-binding proteins have been purified from rat liver cytosol. The main purification steps are: precipitation by protamine sulphate, affinity chromatography on CH-Sepharose 4B to which 11-deoxycorticosterone is linked through a disulfide bond and DEAE-cellulose chromatography. Two binding components elute from the DEAE-cellulose column at 0.12 M and 0.2 M NaCl, respectively. By means of dodecylsulphate/polyacrylamide gel electrophoresis it was demonstrated that both components are composed predominantly of a single polypeptide with molecular weights of about 45 000 and 90 000. Antibodies to the two polypeptides have been elicited in rabbits. The antibodies to the 45 000-Mr polypeptide cross react with the 90 000-Mr component. Likewise the antibodies to the 90 000-Mr protein precipitate the 45 000-Mr polypeptide. Either of the two antibody preparations immunoprecipitates the major part (approximately 70%) of the dexamethasone-binding activity of the cytosol.  (+info)

Analysis of Chinese herbal creams prescribed for dermatological conditions. (12/8350)

OBJECTIVE: To determine whether Chinese herbal creams used for the treatment of dermatological conditions contain steroids. DESIGN: 11 herbal creams obtained from patients attending general and paediatric dermatology outpatient clinics were analysed with high resolution gas chromatography and mass spectrometry. SETTING: Departments of dermatology and clinical biochemistry. MAIN OUTCOME MEASURE: Presence of steroid. RESULTS: Eight creams contained dexamethasone at a mean concentration of 456 micrograms/g (range 64 to 1500 micrograms/g). All were applied to areas of sensitive skin such as face and flexures. CONCLUSION: Greater regulation needs to be imposed on Chinese herbalists to prevent illegal and inappropriate prescribing of potent steroids.  (+info)

Antisense downregulation of a mouse mammary tumor virus activated protooncogene in mouse mammary tumor cells reverses the malignant phenotype. (13/8350)

Activation of the protooncogene Wnt-1 by insertion of the mouse mammary tumor virus (MMTV) is known to cause mammary tumors in mice. Wnt-1 expression in mammary glands has been postulated to confer direct local growth stimulation of mammary epithelial cells leading to their acquisition of a preneoplastic state. Wnt-1 expression also induces morphological alterations in cultured normal mammary cells. However, it has not been determined whether or not transformed mammary cells require continuous Wnt-1 expression for their ability to form tumors in vivo. To address this question, we constructed antisense and sense Wnt-1 expression vectors containing a synthetic promoter composed of five high-affinity glucocorticoid response elements (GRE5). This promoter is at least 50-fold more inducible by dexamethasone than the promoter contained in the long terminal repeats of MMTV. The vectors were introduced into a mouse mammary tumor cell line (R/Sa-MT) that expresses high levels of endogenous Wnt-1 mRNA and forms rapidly growing tumors when transplanted into syngeneic hosts. Of the 12 stably transfected cell lines established (9 with antisense and 3 with sense constructs), 2 antisense cell lines (R/Sa-MT/antisense) and 1 sense cell line (R/Sa-MT/sense) were examined for inducibility by dexamethasone of antisense and sense Wnt-1 RNAs, changes in endogenous Wnt-1 RNA expression, and changes in cell morphology. The growth patterns of the cells in vitro and in vivo were also examined. Our results show that (1) the levels of the expression of endogenous Wnt-1 mRNA and protein were reduced significantly (>80%) in those cells (R/Sa-MT/antisense) that expressed antisense Wnt-1 RNA at high levels following exposure to dexamethasone, compared to the R/Sa-MT/sense and R/Sa-MT control cells and (2) transplantation of the R/Sa-MT/antisense cells produced smaller tumors ( approximately 0.2 cm in 16 weeks) compared to the tumors ( approximately 2.0 cm in 8 weeks) that were produced by the R/Sa-MT/sense and R/Sa-MT cells. We therefore suggest that Wnt-1 expression is required not only for the transformation of normal mammary cells into tumor cells, but also for the maintenance of their tumorigenicity.  (+info)

Role of iNOS in the vasodilator responses induced by L-arginine in the middle cerebral artery from normotensive and hypertensive rats. (14/8350)

1. The substrate of nitric oxide synthase (NOS), L-arginine (L-Arg, 0.01 microM - 1 mM), induced endothelium-independent relaxations in segments of middle cerebral arteries (MCAs) from normotensive Wistar-Kyoto (WKY) and hypertensive rats (SHR) precontracted with prostaglandin F2alpha (PGF2alpha). These relaxations were higher in SHR than WKY arteries. 2. L-N(G)-nitroarginine methyl ester (L-NAME) and 2-amine-5,6-dihydro-6-methyl-4H-1,3-tiazine (AMT), unspecific and inducible NOS (iNOS) inhibitors, respectively, reduced those relaxations, specially in SHR. 3. Four- and seven-hours incubation with dexamethasone reduced the relaxations in MCAs from WKY and SHR, respectively. 4. Polymyxin B and calphostin C, protein kinase C (PKC) inhibitors, reduced the L-Arg-induced relaxation. 5. Lipopolysaccharide (LPS, 7 h incubation) unaltered and inhibited these relaxations in WKY and SHR segments, respectively. LPS antagonized the effect polymyxin B in WKY and potentiated L-Arg-induced relaxations in SHR in the presence of polymyxin B. 6. The contraction induced by PGF2alpha was greater in SHR than WKY arteries. This contraction was potentiated by dexamethasone and polymyxin B although the effect of polymyxin B was higher in SHR segments. LPS reduced that contraction and antagonized dexamethasone- and polymyxin B-induced potentiation, these effects being greater in arteries from SHR. 7. These results suggest that in MCAs: (1) the induction of iNOS participates in the L-Arg relaxation and modulates the contraction to PGF2alpha; (2) that induction is partially mediated by a PKC-dependent mechanism; and (3) the involvement of iNOS in such responses is greater in the hypertensive strain.  (+info)

Effect of cryopreservation on cytochrome P-450 enzyme induction in cultured rat hepatocytes. (15/8350)

In the present study, we evaluated the inducibility of cytochrome P-450 (CYP) CYP1A, CYP2B, CYP3A, and CYP4A by beta-naphthoflavone, phenobarbital, dexamethasone, and clofibric acid, respectively, in primary hepatocyte cultures prepared from both fresh and cryopreserved rat hepatocytes. Rat hepatocytes were successfully thawed and cultured after cryopreservation in liquid nitrogen for up to 1 month. Percentage of total recovery, viable cell recovery, and final viability of the cells were 68%, 72%, and 85%, respectively. Regardless of whether they were cryopreserved or not, cultured hepatocytes exhibited near-normal morphology. Treatment of cryopreserved hepatocytes with beta-naphthoflavone caused an 8-fold increase in 7-ethoxyresorufin O-dealkylase (CYP1A1/2) activity, with an EC50 of 1.5 microM; treatment with phenobarbital caused a 26-fold increase in 7-pentoxyresorufin O-dealkylase (CYP2B1/2) activity, with an EC50 of 10 microM; treatment with dexamethasone caused a 10-fold increase in testosterone 6beta-hydroxylase (CYP3A1/2) activity, with an EC50 of 1.3 microM, whereas treatment with clofibric acid caused a 3-fold increase in lauric acid 12-hydroxylase (CYP4A1-3) activity, with an EC50 of 170 microM. The induction of CYP1A, CYP2B, CYP3A, and CYP4A enzymes by these inducers was confirmed by Western immunoblotting. The patterns of P-450 induction in cryopreserved rat hepatocytes, in terms of concentration response, reproducibility, magnitude, and specificity of response, were similar to those observed in freshly isolated hepatocytes. Additionally, the magnitude and specificity of induction was similar to that observed in vivo in rats. In conclusion, under the conditions examined, cryopreserved rat hepatocytes appear to be a suitable in vitro system for evaluating xenobiotics as inducers of P-450 enzymes.  (+info)

Glucocorticoids inhibit serum depletion-induced apoptosis in T lymphocytes expressing Bcl-2. (16/8350)

Depletion of growth factors and glucocorticoids are known to induce apoptosis and inhibit growth in T lymphocytes. We have examined the effect of Bcl-2 expression on the cellular response to growth factor depletion in the presence or absence of glucocorticoids. Cell growth was determined by cell counting and viability was quantitated by dye exclusion. Apoptosis was evaluated by flow cytometry, analysis of DNA integrity, and enzymatic determination of caspase-3-like activity. Serum depletion and glucocorticoid administration inhibited cell growth and stimulated apoptosis in Bcl-2 negative cells. Cotreatment with both stimuli had additive effects on apoptosis but not on inhibition of cell growth. Bcl-2 expression abrogated the repressive effect of glucocorticoids on apoptosis but not on cell growth. In contrast, neither apoptosis nor growth inhibition induced by serum depletion of cells was blocked by Bcl-2 expression. However, glucocorticoid treatment of Bcl-2-overexpressing cells protected them from apoptosis induced by serum depletion. Glucocorticoid protection of Bcl-2-overexpressing cells from serum depletion-induced apoptosis was mimicked by other inducers of apoptosis, which act to inhibit protein synthesis. These data suggest that Bcl-2 expression can switch the effect of glucocorticoids from proapoptotic to antiapoptotic when lymphocytes expressing Bcl-2 are exposed to other apoptotic stimuli.  (+info)