Molecular basis for the association of group IIA phospholipase A(2) and decorin in human atherosclerotic lesions. (25/518)

Group IIA secretory nonpancreatic phospholipase A(2) (snpPLA(2)) is associated with collagen fibers in the extracellular matrix of human atherosclerotic plaques. Decorin, a small proteoglycan (PG) carrying chondroitin/dermatan sulfate glycosaminoglycans (GAGs), forms part of the collagen network in human arteries. To explore whether snpPLA(2) may be associated with collagen fibers via interaction with decorin, we performed (1) immunohistochemistry to compare the relative in vivo localization of snpPLA(2) and decorin in human atherosclerotic tissue and (2) in vitro experiments to study the interaction between snpPLA(2) and decorin. In atherosclerotic lesions, decorin was detected within the snpPLA(2)-positive part of the intima close to the media. Electrophoretic mobility shift assay showed that snpPLA(2) binds to decorin synthesized by human fibroblasts. Native and GAG-depleted decorin enhanced the association of snpPLA(2) to collagen types I and VI in a solid-phase binding assay. Furthermore, snpPLA(2) bound efficiently to a recombinant decorin core protein fragment B/E (Asp45-Lys359). This binding was competed with soluble decorin and inhibited at NaCl concentrations >150 mmol/L. The decorin core protein fragment B/E competed better than dermatan sulfate for binding of snpPLA(2) to decorin-coated microtiter wells. The enzymatic activity of snpPLA(2) increased 2- to 3-fold in the presence of decorin or GAG-depleted decorin. The results show that snpPLA(2) binds preferentially to the decorin protein core rather than to the GAG chain and that this interaction enhances snpPLA(2) activity. As a consequence, this active extracellular enzyme may contribute to the pathogenesis of atherosclerosis by modifying lipoproteins and releasing inflammatory lipid mediators at places of lipoprotein retention in the arterial wall.  (+info)

Altered dermatan sulfate structure and reduced heparin cofactor II-stimulating activity of biglycan and decorin from human atherosclerotic plaque. (26/518)

Biglycan and decorin are small dermatan sulfate-containing proteoglycans in the extracellular matrix of the artery wall. The dermatan sulfate chains are known to stimulate thrombin inhibition by heparin cofactor II (HCII), a plasma proteinase inhibitor that has been detected within the artery wall. The purpose of this study was to analyze the HCII-stimulatory activity of biglycan and decorin isolated from normal human aorta and atherosclerotic lesions type II through VI and to correlate activity with dermatan sulfate chain composition and structure. Biglycan and decorin from plaque exhibited a 24-75% and 38-79% loss of activity, respectively, in thrombin-HCII inhibition assays relative to proteoglycan from normal aorta. A significant negative linear relationship was observed between lesion severity and HCII stimulatory activity (r = 0.79, biglycan; r = 0.63, decorin; p < 0.05). Biglycan, but not decorin, from atherosclerotic plaque contained significantly reduced amounts of iduronic acid and disulfated disaccharides DeltaDi-2,4S and DeltaDi-4,6S relative to proteoglycan from normal artery. Affinity coelectrophoresis analysis of a subset of samples demonstrated that increased interaction of proteoglycan with HCII in agarose gels paralleled increased activity in thrombin-HCII inhibition assays. In conclusion, both biglycan and decorin from atherosclerotic plaque possessed reduced activity with HCII, but only biglycan demonstrated a correlation between activity and specific glycosaminoglycan structural features. Loss of the ability of biglycan and decorin in atherosclerotic lesions to regulate thrombin activity through HCII may be critical in the progression of the disease.  (+info)

Retrovirally mediated expression of decorin by macrovascular endothelial cells. Effects on cellular migration and fibronectin fibrillogenesis in vitro. (27/518)

Decorin is a member of the widely expressed family of small leucine-rich proteoglycans. In addition to a primary role as a modulator of extracellular matrix protein fibrillogenesis, decorin can inhibit the cellular response to growth factors. Decorin expression is induced in endothelial cells during angiogenesis, but not when migration and proliferation are stimulated. Thus, decorin may support the formation of the fibrillar pericellular matrix that stabilizes the differentiated endothelial phenotype during the later stages of angiogenesis. Therefore, we tested whether constitutive decorin expression alone could modify endothelial cell migration and proliferation or affect pericellular matrix formation. To this end, replication-defective retroviral vectors were used to stably express bovine decorin, which was detected by Northern and Western blotting. The migration of endothelial cells that express decorin is significantly inhibited in both monolayer outgrowth and microchemotaxis chamber assays. The inhibition of cell migration by decorin was not accompanied by decreased proliferation. In addition, endothelial cells that express decorin assemble an extensive fibrillar fibronectin matrix more rapidly than control cells as assessed by immunocytochemical and fibronectin fibrillogenesis assays. These observations suggest that cell migration may be modulated by the influence of decorin on the assembly of the cell-associated extracellular matrix.  (+info)

The microfibrillar proteins MAGP-1 and fibrillin-1 form a ternary complex with the chondroitin sulfate proteoglycan decorin. (28/518)

MAGP-1 and fibrillin-1, two protein components of extracellular microfibrils, were shown by immunoprecipitation studies to interact with the chondroitin sulfate proteoglycan decorin in the medium of cultured fetal bovine chondrocytes. Decorin interacted with each protein individually and with both proteins together to form a ternary complex. Expression of truncated fibrillin-1 proteins in Chinese hamster ovary cells localized proteoglycan binding to an amino-terminal region near the proline-rich domain. A spatially analogous fibrillin-2 truncated protein did not coprecipitate the same sulfated molecule, suggesting that chondroitin sulfate proteoglycan binding in this region is specific for fibrillin-1. An interaction between fibrillin and MAGP-1 was also observed under culture conditions that abrogated decorin secretion, suggesting that the two microfibrillar proteins can associate in the absence of the proteoglycan. Sulfation of matrix proteins is important for elastic fiber assembly because inhibition of sulfation was shown to prevent microfibrillar protein incorporation into the extracellular matrix of cultured cells.  (+info)

Decorin binds near the C terminus of type I collagen. (29/518)

Decorin belongs to a family of small leucine-rich proteoglycans that are directly involved in the control of matrix organization and cell growth. Genetic evidence indicates that decorin is required for the proper assembly of collagenous matrices. Here, we sought to establish the precise binding site of decorin on type I collagen. Using rotary shadowing electron microscopy and photoaffinity labeling, we mapped the binding site of decorin protein core to a narrow region near the C terminus of type I collagen. This region is located within the cyanogen bromide peptide fragment alpha1(I) CB6 and is approximately 25 nm from the C terminus, in a zone that coincides with the c(1) band of the collagen fibril d-period. This location is very close to one of the major intermolecular cross-linking sites of collagen heterotrimers. Thus, decorin protein core possesses a unique binding specificity that could potentially regulate collagen fibril stability.  (+info)

Proteoglycan composition in the human sclera during growth and aging. (30/518)

PURPOSE: Scleral proteoglycans were characterized from human donor eyes aged 2 months to 94 years to identify age-related changes in the synthesis and/or accumulation of these extracellular matrix components. METHODS: Newly synthesized proteoglycans (previously radiolabeled with 35SO4) and total accumulated scleral proteoglycans were extracted with 4 M guanidine hydrochloride and separated by molecular sieve chromatography on a Sepharose CL-4B column. The elution positions of newly synthesized and total accumulated proteoglycans were determined by assaying each fraction for radioactivity and glycosaminoglycans, respectively. Regression analyses were performed on the three major proteoglycan peaks to identify age-related changes in scleral proteoglycan composition. Scleral proteoglycans were further purified by anion-exchange chromatography and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analyses. RESULTS: Human scleral proteoglycans were apparent as three major peaks after chromatography on Sepharose CL-4B. The two faster eluting peaks contained alternative forms of the cartilage proteoglycan, aggrecan, whereas the third peak contained the small proteoglycans biglycan and decorin. The relative percentage of newly synthesized and total accumulated aggrecan increased approximately two- to sixfold from infancy to 94 years. In contrast, the relative percentage of newly synthesized and total accumulated biglycan and decorin decreased by approximately 25%. Chromatography and Western blot results indicated that the absolute amounts of all three proteoglycans significantly increased in concentration within the sclera from birth to the fourth decade. Beyond the fourth decade, decorin and biglycan decreased in all scleral regions and were present in lowest concentrations by the ninth decade. In contrast, aggrecan, which was present in highest concentration in the posterior sclera, was not significantly reduced with increasing age. CONCLUSIONS: The age-related changes in scleral proteoglycan composition observed in the present study are likely to contribute to the regional alterations in biomechanical properties of the sclera associated with growth and aging.  (+info)

Activation of extracellular signal-regulated protein kinase1,2 results in down-regulation of decorin expression in fibroblasts. (31/518)

Decorin is a small leucine-rich extracellular matrix proteoglycan, the expression of which is down-regulated in proliferating and malignantly transformed cells. In the present study we show that the expression of decorin in fibroblasts is suppressed by epidermal growth factor (EGF) and PMA, and that the effect of both is potently inhibited by blocking the extracellular signal-regulated protein kinase (ERK)1,2 signalling pathway (Raf/MEK1,2/ERK1,2) with the specific MAPK/ERK kinase (MEK)1,2 inhibitor, PD98059. In addition, specific activation of ERK1,2 by adenovirus-mediated expression of constitutively active MEK1 in dermal fibroblasts results in marked reduction in decorin mRNA abundance and production. Co-transfection of NIH-3T3 fibroblasts with human decorin promoter/chloramphenicol acetyltransferase (CAT) construct (pDEC--879/CAT) in combination with the expression vectors for constitutively active Raf-1 and MEK1 markedly suppressed decorin promoter activity. Co-transfections of human decorin promoter 5'-deletion constructs with constitutively active MEK1 expression vector identified the region -278 to -188 as essential for ERK1,2 mediated down-regulation of decorin promoter activity. These results show that activation of the ERK1,2 signalling pathway by a mitogenic growth factor, a tumour promoter or transformation suppresses decorin gene expression in fibroblasts, which in turn may promote proliferation and migration of normal and malignant cells.  (+info)

Bone morphogenetic protein-1 processes probiglycan. (32/518)

Bone morphogenetic protein-1 (BMP-1) is a metalloprotease that plays important roles in regulating the deposition of fibrous extracellular matrix in vertebrates, including provision of the procollagen C-proteinase activity that processes the major fibrillar collagens I-III. Biglycan, a small leucine-rich proteoglycan, is a nonfibrillar extracellular matrix component with functions that include the positive regulation of bone formation. Biglycan is synthesized as a precursor with an NH(2)-terminal propeptide that is cleaved to yield the mature form found in vertebrate tissues. Here, we show that BMP-1 cleaves probiglycan at a single site, removing the propeptide and producing a biglycan molecule with an NH(2) terminus identical to that of the mature form found in tissues. BMP-1-related proteases mammalian Tolloid and mammalian Tolloid-like 1 (mTLL-1) are shown to have low but detectable levels of probiglycan-cleaving activity. Comparison shows that wild type mouse embryo fibroblasts (MEFs) produce only fully processed biglycan, whereas MEFs derived from embryos homozygous null for the Bmp1 gene, which encodes both BMP-1 and mammalian Tolloid, produce predominantly unprocessed probiglycan, and MEFs homozygous null for both the Bmp1 gene and the mTLL-1 gene Tll1 produce only unprocessed probiglycan. Thus, all detectable probiglycan-processing activity in MEFs is accounted for by the products of these two genes.  (+info)