The role of RBF in the introduction of G1 regulation during Drosophila embryogenesis. (1/5324)

The first appearance of G1 during Drosophila embryogenesis, at cell cycle 17, is accompanied by the down-regulation of E2F-dependent transcription. Mutant alleles of rbf were generated and analyzed to determine the role of RBF in this process. Embryos lacking both maternal and zygotic RBF products show constitutive expression of PCNA and RNR2, two E2F-regulated genes, indicating that RBF is required for their transcriptional repression. Despite the ubiquitous expression of E2F target genes, most epidermal cells enter G1 normally. Rather than pausing in G1 until the appropriate time for cell cycle progression, many of these cells enter an ectopic S-phase. These results indicate that the repression of E2F target genes by RBF is necessary for the maintenance but not the initiation of a G1 phase. The phenotype of RBF-deficient embryos suggests that rbf has a function that is complementary to the roles of dacapo and fizzy-related in the introduction of G1 during Drosophila embryogenesis.  (+info)

Ontogeny of expression of a receptor for platelet-activating factor in mouse preimplantation embryos and the effects of fertilization and culture in vitro on its expression. (2/5324)

Platelet-activating factor (PAF; 1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a potent ether phospholipid. It is one of the preimplantation embryo's autocrine growth/survival factors. It may act via a G protein-linked receptor on the embryo; however, the evidence for this is conflicting. The recent description of the intracellular form of the PAF:acetlyhydrolase enzyme as having structural homology with G proteins and Ras also suggests this as a potential intracellular receptor/transducer for PAF. This study used reverse transcription-polymerase chain reaction to examine the ontogeny of expression of the genes for these proteins in the oocyte and preimplantation-stage embryo. Transcripts for the G protein-linked PAF receptor were detected in the late 2-cell-stage embryo and in all stages from the 4-cell stage to blastocysts. They were also present in unfertilized oocytes and newly fertilized zygotes but only at relatively low levels. The incidence of expression was generally low and variable in late zygotes and early 2-cell embryos. Expression past the 2-cell stage was alpha-amanitin sensitive. The results indicated that mRNA for this receptor is a maternal transcript that was degraded during the zygote-2-cell stage. New expression of the receptor transcript required activation of the zygotic genome. Fertilization of embryos in vitro caused this transcript not to be expressed in the zygote. Culture of zygotes (irrespective of their method of fertilization) caused expression from the zygotic genome to be retarded by more than 24 h. This retardation did not occur if culture commenced at the 2-cell stage. The transcripts for the subunits of intracellular PAF:acetylhydrolase were not detected in oocytes or at any stage of embryo development examined, despite their being readily detected in control tissue. This study confirms the presence of the G protein-linked PAF receptor in the 2-cell embryo and describes for the first time its normal pattern of expression during early development. The adverse effects of in vitro fertilization (IVF) and embryo culture on the expression of this transcript may be a contributing factor for the poor viability of embryos produced in this manner. The reduced expression of PAF-receptor mRNA following IVF predicts that such embryos may have a deficiency in autocrine stimulation and also suggests that supplementation of growth media with exogenous PAF would be only partially beneficial. The effect of IVF and culture may also explain the conflicting literature.  (+info)

X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. (3/5324)

Expression of the X inactive-specific transcript (Xist) is thought to be essential for the initiation of X chromosome inactivation and dosage compensation during female embryo development. In the present study, we analyzed the patterns of Xist transcription and the onset of X chromosome inactivation in bovine preattachment embryos. Reverse transcription-polymerase chain reaction (RT-PCR) revealed the presence of Xist transcripts in all adult female somatic tissues evaluated. In contrast, among the male tissues examined, Xist expression was detected only in testis. No evidence for Xist transcription was observed after a single round of RT-PCR from pools of in vitro-derived embryos at the 2- to 4-cell stage. Xist transcripts were detected as a faint amplicon at the 8-cell stage initially, and consistently thereafter in all stages examined up to and including the expanded blastocyst stage. Xist transcripts, however, were subsequently detected from the 2-cell stage onward after nested RT-PCR. Preferential [3H]thymidine labeling indicative of late replication of one of the X chromosomes was noted in female embryos of different developmental ages as follows: 2 of 7 (28.5%) early blastocysts, 6 of 13 (46.1%) blastocysts, 8 of 11 (72.1%) expanded blastocysts, and 14 of 17 (77.7%) hatched blastocysts. These results suggest that Xist expression precedes the onset of late replication in the bovine embryo, in a pattern compatible with a possible role of bovine Xist in the initiation of X chromosome inactivation.  (+info)

Heat shock protein 70 (Hsp70) protects postimplantation murine embryos from the embryolethal effects of hyperthermia. (4/5324)

Previous work has shown that there is a positive correlation between the induction of Hsp70 and its transient nuclear localization and the acquisition and loss of induced thermotolerance in postimplantation rat embryos. To determine whether Hsp70 is sufficient to induce thermotolerance in postimplantation mammalian embryos, we used a transgenic mouse in which the normally strictly inducible Hsp70 is constitutively expressed in the embryo under the control of a beta-actin promoter. Day 8.0 mouse embryos heterozygous for the Hsp70 transgene were not protected from the embryotoxic effects of hyperthermia (43 degrees C); however, homozygous embryos, expressing approximately twice as much Hsp70 as heterozygous embryos, were partially protected (increased embryo viability) from the embryolethal effects of hyperthermia. Although the viability of transgenic embryos was significantly increased compared with that of nontransgenic embryos, this protection did not extend to embryo growth and development. To determine whether the failure to achieve a more robust protection was related to the expression of insufficient Hsp70 in transgenic embryos, we undertook experiments to determine whether the level of Hsp70 correlated with the level of thermotolerance induced by various lengths of a 41 degrees C heat shock. A 41 degrees C, 5-minute heat shock failed to induce Hsp70 or thermotolerance, a 41 degrees C, 15-minute heat shock induced Hsp70 and a significant level of thermotolerance, while a 41 degrees C, 60-minute heat shock induced an even higher level of Hsp70 as well as a higher level of thermotolerance. Quantitation of Hsp70 levels indicated that thermotolerance was associated with levels of Hsp70 of 820 pg/microg embryo protein or greater. Subsequent quantitation of the amount of Hsp70 expressed in homozygous transgenic embryos indicated a level of 577 pg/microg embryo protein, that is, a level below that associated with induced thermotolerance. Overall, results presented indicate that Hsp70 does play a direct role in the induction of thermotolerance in postimplantation mouse embryos; however, the level of thermotolerance is dependent on the level of Hsp70 expressed.  (+info)

Embryological study of a T/t locus mutation (tw73) affecting trophectoderm development. (5/5324)

Mouse embryos homozygous for the recessive lethal mutation tw73 show specific defects in trophectoderm shortly after implantation. The trophectoderm and ectoplacental cone fail to form the usual close association with the uterine decidua, and proliferation is markedly reduced. The embryo proper ceases to develop beyond the two-layered stage and degenerates and dies within 5 days of implantation.  (+info)

Comparative synteny cloning of zebrafish you-too: mutations in the Hedgehog target gli2 affect ventral forebrain patterning. (6/5324)

Zebrafish you-too (yot) mutations interfere with Hedgehog (Hh) signaling during embryogenesis. Using a comparative synteny approach, we isolated yot as a zinc finger transcription factor homologous to the Hh target gli2. Two alleles of yot contain nonsense mutations resulting in carboxy-terminally truncated proteins. In addition to causing defects in midline development, muscle differentiation, and retinal axon guidance, yot mutations disrupt anterior pituitary and ventral forebrain differentiation. yot mutations also cause ectopic lens formation in the ventral diencephalon. These findings reveal that truncated zebrafish Gli2 proteins interfere with Hh signaling necessary for differentiation and axon guidance in the ventral forebrain.  (+info)

alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo. (7/5324)

At gastrulation in the sea urchin embryo dramatic cell adhesion changes contribute to primary mesenchyme cell ingression movements and to cell rearrangements during archenteron invagination. At ingression, quantitative adhesion assays demonstrated previously that primary mesenchyme cells (PMCs) change their affinity for neighboring cells, for a fibronectin-like substrate, and for the hyaline layer. To investigate the molecular basis for these and other differential cell affinities at gastrulation, we have identified an integrin that appears to be responsible for specific alterations in cell-substrate adhesion to laminin. During early cleavage stages blastomeres adhere poorly to laminin substrates. Around hatching there is a large increase in the ability of blastomeres to bind to laminin and this increase correlates temporally with the expression of an integrin on the basal surface all blastomeres. PMCs, after undergoing their epithelial-mesenchymal transition, have a strongly reduced affinity for laminin relative to ectoderm cells and, correspondingly, do not stain for the presence of the integrin. We identified the alpha integrin cDNA from Lytechinus variegatus by RT-PCR. Overlapping clones were obtained from a midgastrula cDNA library to provide a complete sequence for the integrin. The composite cDNA encoded a protein that was most similar to the alpha5 subgroup of vertebrate integrins, but there was not a definitive vertebrate integrin homolog. Northern blots and Western immunoblots showed that the sea urchin integrin, which we have named alphaSU2, is present in eggs and during all stages of development. Immunolocalization with specific polyclonal antibodies showed that alphaSU2 first appears on the basal cell surface of epithelia at the midblastula stage, at a time correlating with the increase in adhesive affinity for laminin. The protein remains at high levels on the basal surface of ectoderm cells but is temporarily reduced or eliminated from endoderm cells during their convergent-extension movements. To confirm integrin binding specificity, alphaSU2 was transfected into an alpha-integrin-deficient CHO cell line. alphaSU2-expressing CHO cells bound well to isolated sea urchin basal lamina and to purified laminin. The transfected cells bound weakly or not at all to fibronectin, type I collagen, and type IV collagen. This is consistent with the hypothesis that alphaSU2 integrin functions by binding epithelial cells to laminin in the basal lamina. In vivo, modulation of alphaSU2 integrin expression correlates with critical adhesive changes during cleavage and gastrulation. Thus, this protein appears to be an important contributor to the morphogenetic rearrangements that characterize gastrulation in the sea urchin embryo.  (+info)

Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw. (8/5324)

Agnathan or jawless vertebrates, such as lampreys, occupy a critical phylogenetic position between the gnathostome or jawed vertebrates and the cephalochordates, represented by amphioxus. In order to gain insight into the evolution of the vertebrate head, we have cloned and characterized a homolog of the head-specific gene Otx from the lamprey Petromyzon marinus. This lamprey Otx gene is a clear phylogenetic outgroup to both the gnathostome Otx1 and Otx2 genes. Like its gnathostome counterparts, lamprey Otx is expressed throughout the presumptive forebrain and midbrain. Together, these results indicate that the divergence of Otx1 and Otx2 took place after the gnathostome/agnathan divergence and does not correlate with the origin of the vertebrate brain. Intriguingly, Otx is also expressed in the cephalic neural crest cells as well as mesenchymal and endodermal components of the first pharyngeal arch in lampreys, providing molecular evidence of homology with the gnathostome mandibular arch and insights into the evolution of the gnathostome jaw.  (+info)