Isotope-labeled immunoassays without radiation waste. (1/48)

The practice of immunoassay has experienced a widespread transition from radioisotopic labeling to nonisotopic labeling over the last two decades. Radioisotope labels have drawbacks that hamper their applications: (i) perceived radiation hazards of reagents, (ii) regulatory requirements and disposal problems of working with radioactive materials, and (iii) short shelf-life of the labeled reagents. The advantage of isotopic labeling is the incorporation into analytes without altering structure or reactivity, as is often the case with ELISA or fluorescent detection systems. We developed a format for isotope label immunoassay with the long-life isotope (14)C as the label and accelerator mass spectrometer (AMS) as the detection system. AMS quantifies attomole levels of several isotopes, including (14)C. With this exquisite sensitivity, the sensitivity of an immunoassay is limited by the K(d) of the antibody and not the detection system. The detection limit of the assays for atrazine and 2,3,7,8-tetrachlorodibenzo-p-dioxin was 2.0 x 10(-10) M and 2.0 x 10(-11) M, respectively, approximately an order of magnitude below the standard enzyme immunoassay. Notably, <1 dpm (0.45 pCi) of (14)C-labeled compound was used in each assay, which is well below the limit of disposal (50 nCi per g) as nonradioactive waste. Thus, endogenous reporter ligands quantified by AMS provide the advantages of an RIA without the associated problems of radioactive waste.  (+info)

On-line monitoring of wastewater using ion chromatography. (2/48)

Ion Chromatography (IC) has been used for the on-line determination of anions and cations in a variety of process streams. On-line monitoring of process and wastewater streams optimizes the control of treatment methods by providing early indications of problems that could increase discharges of hazardous compounds to the environment. It is important for the immediate detection and remediation of process upsets in critical streams. The waste flow to the Radioactive Liquid Waste Treatment Facility at the Los Alamos National Laboratory (LANL) is processed before discharge and requires monitoring. Process chromatography is used to monitor the trends of contaminants in real time. The purpose of this study is to develop an automated on-line IC procedure for the simultaneous determination of anions in LANL wastewater.  (+info)

A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry. (3/48)

A new multiplexed, bead-based method which utilizes nucleic acid hybridizations on the surface of microscopic polystyrene spheres to identify specific sequences in heterogeneous mixtures of DNA sequences is described. The method consists of three elements: beads (5.6-microm diameter) with oligomer capture probes attached to the surface, three fluorophores for multiplexed detection, and flow cytometry instrumentation. Two fluorophores are impregnated within each bead in varying amounts to create different bead types, each associated with a unique probe. The third fluorophore is a reporter. Following capture of fluorescent cDNA sequences from environmental samples, the beads are analyzed by flow cytometric techniques which yield a signal intensity for each capture probe proportional to the amount of target sequences in the analyte. In this study, a direct hybrid capture assay was developed and evaluated with regard to sequence discrimination and quantitation of abundances. The target sequences (628 to 728 bp in length) were obtained from the 16S/23S intergenic spacer region of microorganisms collected from polluted groundwater at the nuclear waste site in Hanford, Wash. A fluorescence standard consisting of beads with a known number of fluorescent DNA molecules on the surface was developed, and the resolution, sensitivity, and lower detection limit for measuring abundances were determined. The results were compared with those of a DNA microarray using the same sequences. The bead method exhibited far superior sequence discrimination and possesses features which facilitate accurate quantitation.  (+info)

The incidence of childhood leukaemia around the La Hague nuclear waste reprocessing plant (France): a survey for the years 1978-1998. (4/48)

BACKGROUND: A previous study has suggested an increased incidence rate of leukaemia from 1978 to 1992 in people aged 0 to 24 years and living in the vicinity of the La Hague nuclear waste reprocessing plant without considering age and cytological type. SETTING: The Nord Cotentin region (France) and the island of Alderney (United Kingdom). STUDY OBJECTIVE: To describe the occurrence of leukaemia for each age group and cytological type from 1978 to 1998 in the same area, using accurate reference incidence rates and adequate estimation of the at risk population. DESIGN: A geographical study of incidence using three zones defined according to their distance from the site (0 to 10 km: Beaumont-Hague electoral ward, 10 to 20 km and 20 to 35 km) has been conducted. The risk of leukaemia was estimated from the standardised incidence ratio (SIR) of the number of cases observed to the number expected. Exact 95% confidence intervals (CI) have been computed. PARTICIPANTS: All people under the age of 25 years living in the study region between 1978 and 1998. MAIN RESULTS: The observed number of cases of leukaemia in the study region as a whole was consistent with the expected value (SIR=1.03; 95%CI: 0.73, 1.41). No cases were observed on Alderney. The SIR in the Beaumont-Hague electoral ward was 2.17 (95%CI: 0.71, 5.07). The highest SIR was observed in the 5 to 9 years age group (SIR=6.38; 95%CI: 1.32, 18.65). This consists in acute lymphoblastic leukaemia cases. CONCLUSION: This study indicates an increased incidence of leukaemia in the area situated at less than 10 km from the plant. Monitoring and further investigations should be targeted at acute lymphoblastic leukaemia occurring during the childhood incidence peak (before 10 years) in children living near the La Hague site and may be other nuclear reprocessing plants.  (+info)

Population mixing and leukaemia in young people around the La Hague nuclear waste reprocessing plant. (5/48)

In order to investigate for an association between population mixing and the occurrence of leukaemia in young people (less than 25 years), a geographical study was conducted, for the years 1979 to 1998, in Nord Cotentin (France). This area experienced between the years 1978 and 1992 a major influx of workers for the construction of a nuclear power station and a new nuclear waste reprocessing unit. A population mixing index was defined on the basis of the number of workers born outside the French department of 'La Manche' and living in each 'commune', the basic geographical unit under study. The analyses were done with indirect standardisation and Poisson regression model allowing or not for extra-Poisson variation. Urban 'communes' were considered as the reference population. The Incidence Rate Ratio was 2.7 in rural 'communes' belonging to the highest tertile of population mixing (95% Bayesian credible interval, 95%BCI=1.2-5.9). A positive trend was observed among rural strata with increasing population mixing index (IRR for trend=1.4, 95%BCI=1.1-1.8). The risk became stronger for Acute Lymphoblastic Leukaemia in children 1-6 years old in the highest tertile of population mixing (IRR=5.5, 95%BCI=1.4-23.3). These findings provide further support for a possible infective basis of childhood leukaemia.  (+info)

Nuclear waste transportation: case studies of identifying stakeholder risk information needs. (6/48)

The U.S. Department of Energy (DOE) is responsible for the cleanup of our nation's nuclear legacy, involving complex decisions about how and where to dispose of nuclear waste and how to transport it to its ultimate disposal site. It is widely recognized that a broad range of stakeholders and tribes should be involved in this kind of decision. All too frequently, however, stakeholders and tribes are only invited to participate by commenting on processes and activities that are near completion; they are not included in the problem formulation stages. Moreover, it is often assumed that high levels of complexity and uncertainty prevent meaningful participation by these groups. Considering the types of information that stakeholders and tribes need to be able to participate in the full life cycle of decision making is critical for improving participation and transparency of decision making. Toward this objective, the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) participated in three public processes relating to nuclear waste transportation and disposal in 1997-1998. First, CRESP organized focus groups to identify concerns about nuclear waste transportation. Second, CRESP conducted exit surveys at regional public workshops held by DOE to get input from stakeholders on intersite waste transfer issues. Third, CRESP developed visual tools to synthesize technical information and allow stakeholders and tribes with varying levels of knowledge about nuclear waste to participate in meaningful discussion. In this article we share the results of the CRESP findings, discuss common themes arising from these interactions, and comment on special considerations needed to facilitate stakeholder and tribal participation in similar decision-making processes.  (+info)

Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. (7/48)

Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes. We report that D. geothermalis is transformable with plasmids designed for D. radiodurans and have generated a Hg(II)-resistant D. geothermalis strain capable of reducing Hg(II) at elevated temperatures and in the presence of 50 Gy/h. Additionally, D. geothermalis is capable of reducing Fe(III)-nitrilotriacetic acid, U(VI), and Cr(VI). These characteristics support the prospective development of this thermophilic radiophile for bioremediation of radioactive mixed waste environments with temperatures as high as 55 degrees C.  (+info)

Sanitary engineering aspects of nuclear energy developments. (8/48)

So many developments have taken place in the field of nuclear energy since 1956, when the author's previous paper on radioactive waste disposal was published in the Bulletin of the World Health Organization, that a fresh review of the subject is now appropriate.The present paper deals with those aspects of the problem which are of most interest to the sanitary engineer. It considers specific points in the latest recommendations of the International Commission on Radiological Protection in relation to public drinking-water supplies, and examines the problem of fall-out, with special reference to the presence and significance of strontium-90 in drinking-water. A general survey of the various uses of radioactive materials is followed by a discussion of the legislative and control measures necessary to ensure safe disposal of wastes. The methods of waste disposal adopted in a number of nuclear energy establishments are described in detail. The paper concludes with some remarks on solid waste disposal, siting of nuclear energy industries and area monitoring.  (+info)