A novel class of lipophilic quinazoline-based folic acid analogues: cytotoxic agents with a folate-independent locus. (1/1766)

Three lipophilic quinazoline-based aminomethyl pyridine compounds, which differ only in the position of the nitrogen in their pyridine ring, are described. CB300179 (2-pyridine), CB300189 (4-pyridine) and CB30865 (3-pyridine) all inhibited isolated mammalian TS with IC50 values of 508, 250 and 156 nM respectively. CB30865 was the most potent growth inhibitory agent (IC50 values in the range 1-100 nM for several mouse and human cell types). CB300179 and CB300189 were active in the micromolar range. Against W1L2 cells, CB300179 and CB300189 demonstrated reduced potency in the presence of exogenous thymidine (dThd), and against a W1L2:C1 TS overproducing cell line. In contrast, CB30865 retained activity in these systems. Furthermore, combinations of precursors and end products of folate metabolism, e.g. dThd/hypoxanthine (HX) or leucovorin (LV), did not prevent activity. CB30865 did not interfere with the incorporation of tritiated dThd, uridine or leucine after 4 h. A cell line was raised with acquired resistance to CB30865 (W1L2:R865; > 200-fold), which was not cross-resistant to CB300179 or CB300189. In addition, W1L2:R865 cells were as sensitive as parental cells to agents from all the major chemotherapeutic drug classes. CB300179 and CB300189 induced an S phase accumulation (preventable by co-administration of dThd). No cell cycle redistribution was observed following exposure (4-48 h) to an equitoxic concentration of CB30865. In the NCI anticancer drug-discovery screen, CB30865 displayed a pattern of activity which was not consistent with known anti-tumour agents. These data suggest that CB30865 represents a class of potent potential anti-tumour agents with a novel mechanism of action.  (+info)

Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. (2/1766)

Human recombinant tissue plasminogen activator (tPA) may benefit ischemic stroke patients by dissolving clots. However, independent of thrombolysis, tPA may also have deleterious effects on neurons by promoting excitotoxicity. Zinc neurotoxicity has been shown to be an additional key mechanism in brain injuries. Hence, if tPA affects zinc neurotoxicity, this may provide additional insights into its effect on neuronal death. Independent of its proteolytic action, tPA markedly attenuated zinc-induced cell death in cortical culture, and, when injected into cerebrospinal fluid, also reduced kainate seizure-induced hippocampal neuronal death in adult rats.  (+info)

Heat shock proteins and protection against ischemic injury. (3/1766)

Heat shock proteins present a complex family of proteins exerting chaperone-like activities that are classified according to their molecular weight. We especially explored protective functions of inducible heat shock protein 70, the mitochondrial heat shock protein 60 and 10, and the small heat shock proteins HSP27 and alphaB-crystallin against ischemic, reoxygenation-mediated injury using transgenic animals and hearts under in vivo conditions and in isolated cardiac myocyte-derived cells using adenoviral vectors. We noted with great interest that differential protective effects are exerted by specific hsps. For example, alpha-B-crystallin and constitutive hsp70 markedly protect microtubular structure in cardiac myocytes from ischemia-induced injury. Inducible hsp70, hsp60 and hsp10 when coexpressed, and hsp27 and alphaB-crystallin have an overall protective effect against ischemic injury as determined by the release of enzymes like creatine kinase and LDH. We did not note inflammatory or immune responses elicited by the expression of hsps in transgenic animals and cardiac myocytes. The specific cell types in which hsps are expressed may contribute to the protective effect of hsps versus their inflammatory and immunogenic effects when expressed in other cell types.  (+info)

Low brain intracellular free magnesium in mitochondrial cytopathies. (4/1766)

The authors studied, by in vivo phosphorus magnetic resonance spectroscopy (31P-MRS), the occipital lobes of 19 patients with mitochondrial cytopathies to clarify the functional relation between energy metabolism and concentration of cytosolic free magnesium. All patients displayed defective mitochondrial respiration with low phosphocreatine concentration [PCr] and high inorganic phosphate concentration [Pi] and [ADP]. Cytosolic free [Mg2+] and the readily available free energy (defined as the actual free energy released by the exoergonic reaction of ATP hydrolysis, i.e., deltaG(ATPhyd)) were abnormally low in all patients. Nine patients were treated with coenzyme Q10 (CoQ), which improved the efficiency of the respiratory chain, as shown by an increased [PCr], decreased [Pi] and [ADP], and increased availability of free energy (more negative value of deltaG(ATPhyd)). Treatment with CoQ also increased cytosolic free [Mg2+] in all treated patients. The authors findings demonstrate low brain free [Mg2+] in our patients and indicate that it resulted from failure of the respiratory chain. Free Mg2+ contributes to the absolute value of deltaG(ATPhyd). The results also are consistent with the view that cytosolic [Mg2+] is regulated in the intact brain cell to equilibrate, at least in part, any changes in rapidly available free energy.  (+info)

The plasma membrane NADH oxidase of HeLa cells has hydroquinone oxidase activity. (5/1766)

The plasma membrane NADH oxidase activity partially purified from the surface of HeLa cells exhibited hydroquinone oxidase activity. The preparations completely lacked NADH:ubiquinone reductase activity. However, in the absence of NADH, reduced coenzyme Q10 (Q10H2=ubiquinol) was oxidized at a rate of 15+/-6 nmol min-1 mg protein-1 depending on degree of purification. The apparent Km for Q10H2 oxidation was 33 microM. Activities were inhibited competitively by the cancer cell-specific NADH oxidase inhibitors, capsaicin and the antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea (LY181984). With coenzyme Q0, where the preparations were unable to carry out either NADH:quinone reduction or reduced quinone oxidation, quinol oxidation was observed with an equal mixture of the Q0 and Q0H2 forms. With the mixture, a rate of Q0H2 oxidation of 8-17 nmol min-1 mg protein-1 was observed with an apparent Km of 0.22 mM. The rate of Q10H2 oxidation was not stimulated by addition of equal amounts of Q10 and Q10H2. However, addition of Q0 to the Q10H2 did stimulate. The oxidation of Q10H2 proceeded with what appeared to be a two-electron transfer. The oxidation of Q0H2 may involve Q0, but the mechanism was not clear. The findings suggest the potential participation of the plasma membrane NADH oxidase as a terminal oxidase of plasma membrane electron transport from cytosolic NAD(P)H via naturally occurring hydroquinones to acceptors at the cell surface.  (+info)

Double-blind randomized study on the myeloprotective effect of melatonin in combination with carboplatin and etoposide in advanced lung cancer. (6/1766)

A significant myeloprotective effect of melatonin in mice treated with etoposide, cyclophosphamide or carboplatin has been reported. The present study was designed to evaluate if the same effect could be observed in patients receiving chemotherapy. Twenty previously untreated patients with inoperable lung cancer received two cycles of carboplatin (given at area under the curve 5 by the Calvert formula) on day 1 and etoposide (150 mg m(-2) i.v.) on days 1-3 every 4 weeks. Melatonin 40 mg or placebo (double-blind) was given orally in the evening for 21 consecutive days, starting 2 days before chemotherapy. Patients were randomized to receive melatonin either with the first or the second cycle. Complete blood cell count with differential was done three times per week for 3 weeks. The median age of the cohort was 60 years (range 42-69), 16 patients had non-small cell and four patients small-cell lung cancer, 12 stage III and eight stage IV disease. In a multivariate analysis including age, sex, diagnosis, stage, performance status, doses of carboplatin and etoposide, and concomitant treatment with melatonin or placebo, the haematological parameters--depth and duration of toxicity for haemoglobin, platelets and neutrophils (ANC)--were not significantly different between cycles with/without melatonin. The mean ANC nadir and the mean number of days with ANC < 0.5 x 10(9) l(-1) were 0.5 x 10(9) l(-1) and 2.5 days, respectively, with/without melatonin. We concluded that, in patients with lung cancer, melatonin given orally at a dose of 40 mg per day for 21 days in the evening, does not protect against the myelotoxic effect of carboplatin and etoposide.  (+info)

Pretreatment with inducers of ER molecular chaperones protects epithelial cells subjected to ATP depletion. (7/1766)

We have investigated the potential cytoprotective role of endoplasmic reticulum (ER) molecular chaperones in a cultured cell model of renal ischemia. Madin-Darby canine kidney (MDCK) cells were pretreated with tunicamycin (an inducer of ER but not cytosolic molecular chaperones) for 12-16 h, followed by 6 h of ATP depletion. A rapid and severe depletion of cellular ATP was noted in both control and tunicamycin-treated cells. Trypan blue exclusion assays indicated that pretreatment of MDCK cells with tunicamycin reduced ATP depletion-induced cell damage by approximately 80% compared with nonpretreated controls. This apparent cytoprotective effect was also found following pretreatment with another inducer of ER molecular chaperones (i.e., A23187). For example, A23187 was found to reduce lactate dehydrogenase release by approximately 50% compared with untreated controls, whereas E-64, a cysteine protease inhibitor which may affect degradation of some proteins in the ER, had little or no effect on cell injury. Moreover, a fluorescent assay confirmed the marked reduction in cell damage following ATP depletion (up to 80% reduction in tunicamycin-pretreated cells). Together, these findings are consistent with the notion that induction of ER molecular chaperones leads to the acquisition of cytoprotection in the face of ATP depletion. However, inhibition of protein translation by cycloheximide was found to only partially attenuate the observed cytoprotective effect, raising the possibility that other, as yet to be identified, nonprotein synthesis-dependent mechanisms may also play a role in the observed cytoprotection.  (+info)

Involvement of adenosine receptor, potassium channel and protein kinase C in hypoxic preconditioning of isolated cardiomyocytes of adult rat. (8/1766)

A possible mechanism for hypoxic preconditioning of adult rat cardiomyocytes was pharmacologically investigated. Isolated cardiomyocytes in all experimental groups were incubated for 120 min under hypoxic conditions followed by 15-min reoxygenation (sustained H/R). Sustained H/R decreased rod-shaped cells. Exposure of the cardiomyocytes to 20-min of hypoxia/30-min reoxygenation (hypoxic preconditioning) attenuated the sustained H/R-induced decrease in rod-shaped cells. The effects of hypoxic preconditioning were abolished by treatment with the protein kinase C (PKC) inhibitor polymyxin B, but abolished by neither the adenosine A1/A2-antagonist sulfophenyl theophylline (SPT) nor the ATP-sensitive potassium channel (K(ATP) channel) blocker glibenclamide. In another series of experiments, cardiomyocytes were incubated without hypoxic preconditioning in the presence of either the PKC activator PMA, adenosine or K(ATP)-channel opener nicorandil and then subjected to sustained H/R. Treatment of the cells with PMA, adenosine or nicorandil mimicked the effects of hypoxic preconditioning. The effects of treatment with adenosine and nicorandil were abolished by polymyxin B treatment. Combined treatment with both SPT and glibenclamide abolished the effects of hypoxic preconditioning, whereas it failed to abolish PMA-induced cytoprotection. These results suggest that the activation of PKC in hypoxic preconditioned cardiomyocytes coupled independently with stimulation of adenosine receptor or opening of K(ATP) channel, either of which is fully enough to exert the cytoprotective effects.  (+info)