Cloning and characterization of a maize cytochrome-b5 reductase with Fe3+-chelate reduction capability. (1/395)

We previously purified an NADH-dependent Fe3+-chelate reductase (NFR) from maize roots with biochemical features of a cytochrome-b5 reductase (b5R) [Sparla, Bagnaresi, Scagliarini and Trost (1997) FEBS Lett. 414, 571-575]. We have now cloned a maize root cDNA that, on the basis of sequence information, calculated parameters and functional assay, codes for NFR. Maize NFR has 66% and 65% similarity to mammal and yeast b5R respectively. It has a deduced molecular mass of 31.17 kDa and a pI of 8.53. An uncharged region is observed at its N-terminus but no myristoylation consensus site is present. Taken together, these results, coupled with previous biochemical evidence, prove that NFR belongs to the b5R class and document b5R from a plant at the molecular level for the first time. We have also identified a putative Arabidopsis thaliana NFR gene. Its organization (nine exons) closely resembles mammalian b5Rs. Several NFR isoforms are expected to exist in maize. They are probably not produced by alternative translational mechanisms as occur in mammals, because of specific constraints observed in the maize NFR cDNA sequence. In contrast with yeast and mammals, tissue-specific and various subcellular localizations of maize b5R isoforms could result from differential expression of the various members of a multigene family. The first molecular characterization of a plant b5R indicates an overall remarkable evolutionary conservation for these versatile reductase systems. In addition, the well-characterized Fe3+-chelate reduction capabilities of NFR, in addition to known Fe3+-haemoglobin reduction roles for mammal b5R isoforms, suggest further and more generalized roles for the b5R class in endocellular iron reduction.  (+info)

Purification of gibberellic acid-induced lysosomes from wheat aleurone cells. (2/395)

Using isopycnic density gradient centrifugation, lysosomes were concentrated in a single region of a sucrose-Ficoll gradient (p = 1-10 g cm-3), well separated from most other cell organelles. Gibberellic acid-induced lysosomes were found to be rich in alpha-amylase and protease but not ribonuclease. The lysosomal band also contained a majority of the NADH2-cytochrome c reductase, a marker enzyme for endoplasmic reticulum, found in the gradient. Examination of electron micrographs revealed that a purified band of lyosomes contained at least 3 vesicle types, ranging in size from 0-1 to 0-5 mum. The significance of these findings to proposed mechanisms of action of gibberellic acid is discussed.  (+info)

Phospholipid requirement for dimethylnitrosamine demethylation by hamster hepatic microsomal cytochrome P-450 enzyme system. (3/395)

Extraction with butan-1-ol of freeze-dried microsomal fractions from livers of 3-methyl-cholarthrene-pre-treated hamsters removed about 90% of the total lipid content, but the lipid remaining proved sufficient for the cytochrome P-450 enzyme system to retain about 15-40% of its original catalytic activity for dimethylnitrosamine demethylation. Addition of butan-1-ol-extracted total phospholipid or phosphatidylcholine could not restore any activity, whereas the addition of the synthetic phospholipid dilauroyl phosphatidylcholine was able to restore almost complete activity. Synthetic dipalmitoyl or distearoyl phosphatidylcholine was ineffective in restoring the activity in this reconstituted system.  (+info)

Targeting proteins to the lumen of endoplasmic reticulum using N-terminal domains of 11beta-hydroxysteroid dehydrogenase and the 50-kDa esterase. (4/395)

Previous studies identified two intrinsic endoplasmic reticulum (ER) proteins, 11beta-hydroxysteroid dehydrogenase, isozyme 1 (11beta-HSD) and the 50-kDa esterase (E3), sharing some amino acid sequence motifs in their N-terminal transmembrane (TM) domains. Both are type II membrane proteins with the C terminus projecting into the lumen of the ER. This finding implied that the N-terminal TM domains of 11beta-HSD and E3 may constitute a lumenal targeting signal (LTS). To investigate this hypothesis we created chimeric fusions using the putative targeting sequences and the reporter gene, Aequorea victoria green fluorescent protein. Transfected COS cells expressing LTS-green fluorescent protein chimeras were examined by fluorescent microscopy and electron microscopic immunogold labeling. The orientation of expressed chimeras was established by immunocytofluorescent staining of selectively permeabilized COS cells. In addition, protease protection assays of membranes in the presence and absence of detergents was used to confirm lumenal or the cytosolic orientation of the constructed chimeras. To investigate the general applicability of the proposed LTS, we fused the N terminus of E3 to the N terminus of the NADH-cytochrome b5 reductase lacking the myristoyl group and N-terminal 30-residue membrane anchor. The orientation of the cytochrome b5 reductase was reversed, from cytosolic to lumenal projection of the active domain. These observations establish that an amino acid sequence consisting of short basic or neutral residues at the N terminus, followed by a specific array of hydrophobic residues terminating with acidic residues, is sufficient for lumenal targeting of single-pass proteins that are structurally and functionally unrelated.  (+info)

Identification of an NADH-cytochrome b(5) reductase gene from an arachidonic acid-producing fungus, Mortierella alpina 1S-4, by sequencing of the encoding cDNA and heterologous expression in a fungus, Aspergillus oryzae. (5/395)

Based on the sequence information for bovine and yeast NADH-cytochrome b(5) reductases (CbRs), a DNA fragment was cloned from Mortierella alpina 1S-4 after PCR amplification. This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 298 amino acid residues which show marked sequence similarity to CbRs from other sources, such as yeast (Saccharomyces cerevisiae), bovine, human, and rat CbRs. These results suggested that this cDNA is a CbR gene. The results of a structural comparison of the flavin-binding beta-barrel domains of CbRs from various species and that of the M. alpina enzyme suggested that the overall barrel-folding patterns are similar to each other and that a specific arrangement of three highly conserved amino acid residues (i.e., arginine, tyrosine, and serine) plays a role in binding with the flavin (another prosthetic group) through hydrogen bonds. The corresponding genomic gene, which was also cloned from M. alpina 1S-4 by means of a hybridization method with the above probe, had four introns of different sizes. These introns had GT at the 5' end and AG at the 3' end, according to a general GT-AG rule. The expression of the full-length cDNA in a filamentous fungus, Aspergillus oryzae, resulted in an increase (4.7 times) in ferricyanide reduction activity involving the use of NADH as an electron donor in the microsomes. The M. alpina CbR was purified by solubilization of microsomes with cholic acid sodium salt, followed by DEAE-Sephacel, Mono-Q HR 5/5, and AMP-Sepharose 4B affinity column chromatographies; there was a 645-fold increase in the NADH-ferricyanide reductase specific activity. The purified CbR preferred NADH over NADPH as an electron donor. This is the first report of an analysis of this enzyme in filamentous fungi.  (+info)

Preparation of homogenous NADPH cytochrome c (P-450) reductase from house flies using affinity chromatography techniques. (6/395)

NADPH-cytochrome c (P-450) reductase (EC 1.6.2.4) was purified to apparent homogeneity from microsomes of house flies, Musca domestica L. The purification procedure involves column chromatography on three different resins. The key step in the purification scheme is the chromatography of the enzyme mixture on an affinity column of agarose-hexane-nicotinamide adenine dinucleotide phosphate. The enzyme has an estimated molecular weight of 83,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contains 1 mol each of FAD and FMN per mol of enzyme. The enzyme exhibited a Bi Bi ping-pong kinetic mechanism with NADPH and cytochrome c. The Vmax and Km for cytochrome c were 42.3 mumol min-1 mg-1 and 12.7 muM, respectively. Turnover numbers based on micromoles of enzyme were 2,600 min-1. NADP+ and 2'-AMP both inhibited the reductases with apparent Ki values of 6.9 and 187 muM, respectively. These preparations of NADPH-cytochrome c reductase were found to reduce purified house fly cytochrome P-450 in the presence of NADPH.  (+info)

Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water. (7/395)

An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents.  (+info)

Apparent dependence of interactions between cytochrome b5 and cytochrome b5 reductase upon translational diffusion in dimyristoyl lecithin liposomes. (8/395)

Dimyristoyl lecithin liposomes, containing cytochrome b5 reductase (NADH:ferricytochrome b5 oxidoreductase, EC 1.6.2.2) and varying amounts of cytochrome b5, were used to measure flavoprotein catalysis alone and catalysis requiring electron transfer between the reductase and cytochrome as a function of temperature. Whereas flavoprotein catalysis showed a simple linear temperature dependence in an Arrhenius plot, the reaction involving electron transfer between the two bound enzymes showed a marked, 4-fold, change in rate at the crystalline-liquid crystalline phase transition of the hydrocarbon chains of the lecithin vesicles and a second, minor change involving the minor transition. These data represent strong evidence that protein-protein interactions in this membrane model system are dependent upon translational diffusion of nonpolar segments of the proteins in the hydrocarbon region of the phospholipid bilayer.  (+info)