Characterization of functional domains in the human coronavirus HCV 229E receptor. (73/83)

Human aminopeptidase N (hAPN or CD13) and porcine aminopeptidase N (pAPN) are functional receptors for human coronavirus (HCV) 229E and porcine transmissible gastroenteritis virus (TGEV), respectively. However, hAPN cannot function as a receptor for TGEV and pAPN cannot function as a receptor for HCV 229E. In this study, we constructed a series of chimeric hAPN/pAPN genes and expressed the corresponding proteins in transfected cells. Subsequently, we identified the chimeric proteins that can function as a receptor for HCV 229E. The results show that replacement of a small region of pAPN sequence (pAPN amino acids 255-348) with the corresponding hAPN sequence (hAPN amino acids 260-353) converts pAPN into a functional receptor for HCV 229E. The region of hAPN that we have defined in this way does not correspond to the region of pAPN that has been identified as essential for the TGEV-receptor interaction. We conclude that although both viruses use a homologous receptor protein, different regions of the protein are required to mediate susceptibility to infection with HCV 229E and TGEV.  (+info)

Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. (74/83)

Two members of coronavirus serogroup I, human respiratory coronavirus HCV-229E and porcine transmissible gastroenteritis virus (TGEV), use aminopeptidase N (APN) as their cellular receptors. These viruses show marked species specificity in receptor utilization, as HCV-229E can utilize human but not porcine APN, while TGEV can utilize porcine but not human APN. To determine whether feline APN could serve as a receptor for two feline coronaviruses in serogroup I, feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FeCV), we cloned the cDNA encoding feline APN (fAPN) by PCR from cDNA isolated from a feline cell line and stably expressed it in FIPV- and FeCV-resistant mouse and hamster cells. The predicted amino acid sequence of fAPN shows 78 and 77% identity with human and porcine APN, respectively. When inoculated with either of two biologically different strains of FIPV or with FeCV, fAPN-transfected mouse and hamster cells became infected and viral antigens developed in the cytoplasm. Infectious FIPV was released from hamster cells stably transfected with fAPN. The fAPN-transfected mouse and hamster cells were challenged with other coronaviruses in serogroup I including canine coronavirus, porcine coronavirus TGEV, and human coronavirus HCV-229E. In addition to serving as a receptor for the feline coronaviruses, fAPN also served as a functional receptor for each of these serogroup I coronaviruses as shown by development of viral antigens in the cytoplasm of infected mouse or hamster cells stably transfected with fAPN. In contrast, fAPN did not serve as a functional receptor for mouse hepatitis virus (MHV-A59), which is in serogroup II and utilizes mouse biliary glycoprotein receptors unrelated to APN. Thus, fAPN serves as a receptor for a much broader range of group I coronaviruses than human and porcine APNs. The human, porcine, and canine coronaviruses in serogroup I that are able to use fAPN as a receptor have previously been shown to infect cats without causing disease. Therefore, host factors in addition to receptor specificity apparently affect the virulence and transmissibility of nonfeline serogroup I coronaviruses in the cat.  (+info)

Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43. (75/83)

We evaluated the ability of human coronaviruses to infect primary cultures of human neural cells. Double immunofluorescence with antibodies to virus and cell markers showed infection of fetal astrocytes and of adult microglia and astrocytes by strain OC43. RNA amplification revealed infection of fetal astrocytes, adult microglia, and a mixed culture of adult oligodendrocytes and astrocytes by strain 229E. Infectious virus was released only from fetal astrocytes, with higher titers for OC43. Human coronaviruses have the capacity to infect some cells of the central nervous system, although infection of adult cells appears abortive.  (+info)

Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. (76/83)

Coronavirus gene expression involves proteolytic processing of the gene 1-encoded polyprotein(s), and a key enzyme in this process is the viral 3C-like proteinase. In this report, we describe the biosynthesis of the human coronavirus 229E 3C-like proteinase in Escherichia coli and the enzymatic properties, inhibitor profile, and substrate specificity of the purified protein. Furthermore, we have introduced single amino acid substitutions and carboxyl-terminal deletions into the recombinant protein and determined the ability of these mutant 3C-like proteinases to catalyze the cleavage of a peptide substrate. Using this approach, we have identified the residues Cys-3109 and His-3006 as being indispensable for catalytic activity. Our results also support the involvement of His-3127 in substrate recognition, and they confirm the requirement of the carboxyl-terminal extension found in coronavirus 3C-like proteinases for enzymatic activity. These data provide experimental evidence for the relationship of coronavirus 3C-like proteinases to other viral chymotrypsin-like enzymes, but they also show that the coronavirus proteinase has additional, unique properties.  (+info)

Identification of an ATPase activity associated with a 71-kilodalton polypeptide encoded in gene 1 of the human coronavirus 229E. (77/83)

Human coronavirus 229E gene expression involves proteolytic processing of the gene 1-encoded polyproteins pp1a and pp1ab. In this study, we have detected a 71-kDa polypeptide in virus-infected cells that is released from pp1ab by the virus-encoded 3C-like proteinase and that has been predicted to contain both metal-binding and helicase domains. The polypeptide encompasses amino acids Ala-4996 to Gln-5592 of pp1ab and exhibits nucleic acid-stimulated ATPase activity when expressed as a fusion protein with the Escherichia coli maltose-binding protein. These data provide the first identification of a coronavirus open reading frame 1b-encoded enzymatic activity.  (+info)

Identification and subcellular localization of a 41 kDa, polyprotein 1ab processing product in human coronavirus 229E-infected cells. (78/83)

The translation products of the human coronavirus (HCV) 229E open reading frames 1a and 1b, the polyproteins 1a and 1ab, are processed by virus-encoded proteinases. One of the key enzymes in this process is a chymotrypsin-like enzyme, the 3C-like proteinase. In this study we have identified an ORF 1b-encoded, 41 kDa processing product in HCV 229E-infected cells by using a monoclonal antibody with defined specificity. We show that this polypeptide is released from polyprotein 1ab by 3C-like proteinase-mediated cleavage of the peptide bonds Gln-6110/Gly-6111 and Gln-6458/Ser-6459. Also, we have investigated the subcellular localization of the 41 kDa processing product. Immunofluorescence microscopy revealed a punctate, perinuclear distribution of the 41 kDa polypeptide in infected cells and an identical subcellular localization was observed for three additional pp1ab-derived polypeptides. In contrast, the virus nucleocapsid protein showed a homogeneous cytoplasmic localization.  (+info)

Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N. (79/83)

Aminopeptidase N (APN) is the major cell surface receptor for group 1 coronaviruses. In this study, we have isolated and characterized a feline APN cDNA and shown that the transfection of human embryonic kidney cells with this cDNA renders them susceptible to infection with the feline coronavirus feline infectious peritonitis virus, the human coronavirus (HCV) 229E and the porcine coronavirus porcine transmissible gastroenteritis virus. By using chimeric APN genes, assembled from porcine and feline sequences, we have shown that, analogously to the human APN protein, a region within the amino-terminal part of the feline APN protein (encompassing amino acids 132-295) is essential for its HCV 229E receptor function. Furthermore, by comparing the relevant feline, human and porcine APN sequences, we were able to identify a hypervariable stretch of eight amino acids that are more closely related in the feline and human APN proteins than in the porcine APN molecule. Using PCR-directed mutagenesis, we converted this stretch of amino acids within the porcine APN molecule to the corresponding residues of the human APN molecule. These changes were sufficient to convert porcine APN into a functional receptor for HCV 229E and thus define a small number of residues that are critically important for the HCV 229E receptor function of human APN.  (+info)

Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. (80/83)

Expression of the coronavirus gene 1-encoded polyproteins, pp1a and pp1ab, is linked to a series of proteolytic events involving virus-encoded proteinases. In this study, we used transfection and immunoprecipitation assays to show that the human coronavirus 229E-encoded papain-like cysteine proteinase, PCP1, is responsible for the release of an amino-terminal protein, p9, from the gene 1-encoded polyproteins. The same protein, p9, has also been identified in virus-infected cells. Furthermore, using an in vitro trans-cleavage assay, we defined the proteolytic cleavage site at the carboxyl terminus of p9 as pp1a-pp1ab amino acids Gly-111 and Asn-112. These results and a comparative sequence analysis suggest that substrate positions P1 and P5 seem to be the major determinants of the PCP1 cleavage site and that the latter can occupy a variable position at the amino terminus of the coronavirus ppla and pplab polyproteins. By combining the trans-cleavage assay with deletion mutagenesis, we were also able to locate the boundaries of the active PCP1 domain between pp1a-pp1ab amino acids Gly-861-Glu-975 and Asn-1209-Gln-1285. Finally, codon mutagenesis was used to show that Cys-1054 and His-1205 are essential for PCP1 proteolytic activity, suggesting that these amino acids most likely have a catalytic function.  (+info)