Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. (41/300)

BACKGROUND: Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response. METHODS: Eighty-four antibodies, targeting a wide range of serum proteins, were spotted onto nitrocellulose-coated microscope slides. The abundances of the corresponding proteins were measured in 80 serum samples, from 24 newly diagnosed subjects with lung cancer, 24 healthy controls, and 32 subjects with chronic obstructive pulmonary disease (COPD). Two-color rolling-circle amplification was used to measure protein abundance. RESULTS: Seven of the 84 antibodies gave a significant difference (p < 0.01) for the lung cancer patients as compared to healthy controls, as well as compared to COPD patients. Proteins that exhibited higher abundances in the lung cancer samples relative to the control samples included C-reactive protein (CRP; a 13.3 fold increase), serum amyloid A (SAA; a 2.0 fold increase), mucin 1 and alpha-1-antitrypsin (1.4 fold increases). The increased expression levels of CRP and SAA were validated by Western blot analysis. Leave-one-out cross-validation was used to construct Diagonal Linear Discriminant Analysis (DLDA) classifiers. At a cutoff where all 56 of the non-tumor samples were correctly classified, 15/24 lung tumor patient sera were correctly classified. CONCLUSION: Our results suggest that a distinctive serum protein profile involving abundant proteins may be observed in lung cancer patients relative to healthy subjects or patients with chronic disease and may have utility as part of strategies for detecting lung cancer.  (+info)

Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA-binding protein. (42/300)

Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to antagonize numerous cellular pathways, including the antiviral interferon-alpha response. However, the capacity of this protein to interact with the viral polymerase suggests a more direct role for NS5A in genome replication. In this study, we employed two bacterially expressed, soluble derivatives of NS5A to probe for novel functions of this protein. We find that NS5A has the capacity to bind to the 3'-ends of HCV plus and minus strand RNAs. The high affinity binding site for NS5A in the 3'-end of plus strand RNA maps to the polypyrimidine tract, an element known to be essential for genome replication and infectivity. NS5A has a preference for single-stranded RNA containing stretches of uridine or guanosine. Values for the equilibrium dissociation constants for high affinity binding sites were in the 10 nM range. Two-dimensional gel electrophoresis followed by Western blotting revealed the presence of unphosphorylated NS5A in Huh-7 cells stably expressing the subgenomic replicon. Moreover, RNA immunoprecipitation and NS5A pull-down experiments showed the capacity of replicon-derived NS5A to bind to synthetic RNA and the HCV genome, respectively. Deletion of all of the casein kinase II phosphorylation sites in NS5A supported stable replication of a subgenomic replicon in Huh-7. However, this derivative could not be labeled with inorganic phosphate, suggesting that extensive phosphorylation of NS5A is not required for the replication functions of NS5A. The discovery that NS5A is an RNA-binding protein defines a new functional target for development of agents to treat HCV infection and a new structural class of RNA-binding proteins.  (+info)

Fibronectin is required for integrin alphavbeta6-mediated activation of latent TGF-beta complexes containing LTBP-1. (43/300)

Transforming growth factor-betas (TGF-beta) are secreted as latent complexes consisting of the TGF-beta dimer, the TGF-beta propeptide dimer, and the latent TGF-beta binding protein (LTBP). Although the bonds between TGF-beta and its propeptide are cleaved intracellulary, the propeptide associates with TGF-beta by electrostatic interactions, thereby conferring latency to the complex. We reported that a specific sequence of LTBP-1 is required for latent TGF-beta activation by the integrin alphavbeta6. Here we describe a 24 amino acid sequence from the hinge domain required for activation. The LTBP-1 polypeptide rL1N, which includes the hinge, associates with fibronectin in binding assays. We present evidence that fibronectin null cells minimally activate latent TGF-beta and poorly incorporate the active hinge sequence into their matrix. In addition, cells missing the fibronectin receptor alpha5beta1 exhibit defective activation of latent TGF-beta by alphavbeta6 and decreased matrix incorporation. The results indicate specificity for integrin-mediated latent TGF-beta activation that include unique sequences in LTBP-1 and an appropriate matrix molecule.  (+info)

Evaluation of a western blot method for the detection of Yersinia antibodies: evidence of serological cross-reactivity between Yersinia outer membrane proteins and Borrelia burgdorferi. (44/300)

Yersinia enterocolitica and Yersinia pseudotuberculosis have been identified as causative organisms of reactive arthritis in humans. We evaluated a Western blot assay which uses Yersinia outer membrane proteins as antigens for the detection of Yersinia antibodies as a replacement for the complement fixation (CF) assay. Clinical agreement, sensitivity, and specificity were determined by testing 19 positive and 21 negative serum samples by the CF assay, Western blot assay, and enzyme-linked immunosorbent assay (ELISA). The CF assay and ELISA were compared to the Western blot assay, which was the reference method used in this study. Sera with antibodies that could potentially cross-react with Yersinia were also tested by the Western blot assay. The agreement, sensitivity, and specificity of the CF method were 61%, 26%, and 95%, respectively; and those for the ELISA were 89%, 95%, and 82%, respectively. The prevalences of Yersinia antibodies in 50 healthy donors were 6% for immunoglobulin G (IgG), 2% for IgA, and 2% for IgM. Sera positive for Bartonella henselae, Brucella, Chlamydia pneumoniae, and Rickettsia rickettsii antibodies showed cross-reactivity by the Western blot assay. The highest cross-reactivity was observed with Borrelia burgdorferi; 5 of 11 (45%) specimens were cross-reactive by the IgM-specific assay. Overall, the Western blot assay performs acceptably and is more sensitive than the CF assay, warranting replacement of the CF assay in the laboratory. Due to the evidence of cross-reactivity, particularly with B. burgdorferi, which can cause an oligoarthritis similar to reactive arthritis, the diagnosis of reactive arthritis should be based on clinical findings and complete serologic analysis of the potential causative infectious pathogens.  (+info)

Use of nitrocellulose membranes for protein characterization by matrix-assisted laser desorption/ionization mass spectrometry. (45/300)

We present an improved method for MALDI-MS analysis of proteins that have been electroblotted onto a nitrocellulose (NC) membrane. With this approach, electroblotted proteins can be analyzed directly for intact molecular weight determination or after on-membrane digestion by dissolution of the nitrocellulose in MALDI matrix solution containing 70% acetonitrile and 30% methanol. This solution helps maintain solubility of proteins and peptides while dissolving the NC membrane, which is dissolved by 100% acetone in other protocols. On-membrane tryptic digestion using this method requires half the time of in-gel digestion and results in fewer missed cleavages and better protein coverage. For the membrane proteins studied, bovine uroplakins II and III, the protein coverage was almost twice that provided by conventional in-gel digestion, and the transmembrane domains of both uroplakins were detected only after on-membrane digestion. We also demonstrated the compatibility with MALDI-MS of a new dye, MemCode, which is specifically designed for staining NC membrane-immobilized proteins and is faster and more sensitive than Ponceau-S. Our improved on-membrane digestion protocol greatly improves the study of soluble and, particularly strikingly, integral membrane proteins by mass spectrometry.  (+info)

Transient state kinetics of transcription elongation by T7 RNA polymerase. (46/300)

The single subunit DNA-dependent RNA polymerase (RNAP) from bacteriophage T7 catalyzes both promoter-dependent transcription initiation and promoter-independent elongation. Using a promoter-free substrate, we have dissected the kinetic pathway of single nucleotide incorporation during elongation. We show that T7 RNAP undergoes a slow conformational change (0.01-0.03 s(-1)) to form an elongation competent complex with the promoter-free substrate (dissociation constant (Kd) of 96 nM). The complex binds to a correct NTP (Kd of 80 microM) and incorporates the nucleoside monophosphate (NMP) into RNA primer very efficiently (220 s(-1) at 25 degrees C). An overall free energy change (-5.5 kcal/mol) and internal free energy change (-3.7 kcal/mol) of single NMP incorporation was calculated from the measured equilibrium constants. In the presence of inorganic pyrophosphate (PPi), the elongation complex catalyzes the reverse pyrophosphorolysis reaction at a maximum rate of 0.8 s(-1) with PPi Kd of 1.2 mM. Several experiments were designed to investigate the rate-limiting step in the pathway of single nucleotide addition. Acid-quench and pulse-chase kinetics indicated that an isomerization step before chemistry is rate-limiting. The very similar rate constants of sequential incorporation of two nucleotides indicated that the steps after chemistry are fast. Based on available data, we propose that the preinsertion to insertion isomerization of NTP observed in the crystallographic studies of T7 RNAP is a likely candidate for the rate-limiting step. The studies here provide a kinetic framework to investigate structure-function and fidelity of RNA synthesis and to further explore the role of the conformational change in nucleotide selection during RNA synthesis.  (+info)

Cell-free formation of misfolded prion protein with authentic prion infectivity. (47/300)

Prion propagation has been modeled in vitro; however, the low infectious titer of PrP(Sc) thus generated has cast doubt on the "protein-only" hypothesis. Here we show that prion delivery on suitable nitrocellulose carrier particles abrogates the apparent dissociation of PrP(Sc) and infectivity. Misfolded prion protein generated by protein misfolding cyclic amplification is as infectious as authentic brain-derived PrP(Sc) provided that confounding effects related to differences in the size distribution of prion protein aggregates generated in vitro and consecutive differences in regard to biological clearance are abolished.  (+info)

Selective digestion of nuclear envelopes from Xenopus oocyte germinal vesicles: possible structural role for the nuclear lamina. (48/300)

We have used enzymic digestion as a structural probe to investigate components of the nuclear envelope of germinal vesicles from Xenopus oocytes. Previous studies have shown that these envelopes are composed of a double membrane in which nuclear pore complexes are embedded. The nuclear pore complexes are linked to a fibrous lamina that underlies the nucleoplasmic face of the envelope. The pores are also linked by pore-connecting fibrils that attach near their cytoplasmic face. Xenopus oocyte nuclear envelopes were remarkably resistant to extraction with salt solutions and, even after treatment with 1 M NaCl or 3 M MgCl2, pores, lamina and pore-connecting fibrils remained intact. However, mild proteolysis with trypsin selectively removed the lamina fibres from Triton-extracted nuclear envelopes to leave only the pore complexes and connecting fibrils. This observation confirmed that the pore-connecting fibrils were different from the lamina fibres and were probably constructed from different proteins. Trypsin digestion followed by Triton treatment resulted in the complete disintegration of the nuclear envelope, providing direct evidence for a structural role for the lamina in maintaining envelope integrity. Digestion with ribonuclease did not produce any marked change in the structure of Triton-extracted nuclear envelopes, indicating that probably neither the pore-connecting fibrils nor the cytoplasmic granules on the pore complexes contained a substantial proportion of RNA that was vital for their structural integrity.  (+info)