Control of growth and differentiation by Drosophila RasGAP, a homolog of p120 Ras-GTPase-activating protein. (9/69323)

Mammalian Ras GTPase-activating protein (GAP), p120 Ras-GAP, has been implicated as both a downregulator and effector of Ras proteins, but its precise role in Ras-mediated signal transduction pathways is unclear. To begin a genetic analysis of the role of p120 Ras-GAP we identified a homolog from the fruit fly Drosophila melanogaster through its ability to complement the sterility of a Schizosaccharomyces pombe (fission yeast) gap1 mutant strain. Like its mammalian homolog, Drosophila RasGAP stimulated the intrinsic GTPase activity of normal mammalian H-Ras but not that of the oncogenic Val12 mutant. RasGAP was tyrosine phosphorylated in embryos and its Src homology 2 (SH2) domains could bind in vitro to a small number of tyrosine-phosphorylated proteins expressed at various developmental stages. Ectopic expression of RasGAP in the wing imaginal disc reduced the size of the adult wing by up to 45% and suppressed ectopic wing vein formation caused by expression of activated forms of Breathless and Heartless, two Drosophila receptor tyrosine kinases of the fibroblast growth factor receptor family. The in vivo effects of RasGAP overexpression required intact SH2 domains, indicating that intracellular localization of RasGAP through SH2-phosphotyrosine interactions is important for its activity. These results show that RasGAP can function as an inhibitor of signaling pathways mediated by Ras and receptor tyrosine kinases in vivo. Genetic interactions, however, suggested a Ras-independent role for RasGAP in the regulation of growth. The system described here should enable genetic screens to be performed to identify regulators and effectors of p120 Ras-GAP.  (+info)

The Caenorhabditis elegans sex determination gene mog-1 encodes a member of the DEAH-Box protein family. (10/69323)

In the Caenorhabditis elegans hermaphrodite germ line, the sex-determining gene fem-3 is repressed posttranscriptionally to arrest spermatogenesis and permit oogenesis. This repression requires a cis-acting regulatory element in the fem-3 3' untranslated region; the FBF protein, which binds to this element; and at least six mog genes. In this paper, we report the molecular characterization of mog-1 as well as additional phenotypic characterization of this gene. The mog-1 gene encodes a member of the DEAH-box family. Three mog-1 alleles possess premature stop codons and are likely to be null alleles, and one is a missense mutation and is likely to retain residual activity. mog-1 mRNA is expressed in both germ line and somatic tissues and appears to be ubiquitous. The MOG-1 DEAH-box protein is most closely related to proteins essential for splicing in the yeast Saccharomyces cerevisiae, but splicing appears to occur normally in a mog-1-null mutant. In addition to its involvement in the sperm-oocyte switch and control of fem-3, zygotic mog-1 is required for robust germ line proliferation and for normal growth during development. We suggest that mog-1 plays a broader role in RNA regulation than previously considered.  (+info)

Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. (11/69323)

Staufen (Stau) is a double-stranded RNA (dsRNA)-binding protein involved in mRNA transport and localization in Drosophila. To understand the molecular mechanisms of mRNA transport in mammals, we cloned human (hStau) and mouse (mStau) staufen cDNAs. In humans, four transcripts arise by differential splicing of the Stau gene and code for two proteins with different N-terminal extremities. In vitro, hStau and mStau bind dsRNA via each of two full-length dsRNA-binding domains and tubulin via a region similar to the microtubule-binding domain of MAP-1B, suggesting that Stau cross-links cytoskeletal and RNA components. Immunofluorescent double labeling of transfected mammalian cells revealed that Stau is localized to the rough endoplasmic reticulum (RER), implicating this RNA-binding protein in mRNA targeting to the RER, perhaps via a multistep process involving microtubules. These results are the first demonstration of the association of an RNA-binding protein in addition to ribosomal proteins, with the RER, implicating this class of proteins in the transport of RNA to its site of translation.  (+info)

Identification of a novel family of targets of PYK2 related to Drosophila retinal degeneration B (rdgB) protein. (12/69323)

The protein tyrosine kinase PYK2 has been implicated in signaling pathways activated by G-protein-coupled receptors, intracellular calcium, and stress signals. Here we describe the molecular cloning and characterization of a novel family of PYK2-binding proteins designated Nirs (PYK2 N-terminal domain-interacting receptors). The three Nir proteins (Nir1, Nir2, and Nir3) bind to the amino-terminal domain of PYK2 via a conserved sequence motif located in the carboxy terminus. The primary structures of Nirs reveal six putative transmembrane domains, a region homologous to phosphatidylinositol (PI) transfer protein, and an acidic domain. The Nir proteins are the human homologues of the Drosophila retinal degeneration B protein (rdgB), a protein implicated in the visual transduction pathway in flies. We demonstrate that Nirs are calcium-binding proteins that exhibit PI transfer activity in vivo. Activation of PYK2 by agents that elevate intracellular calcium or by phorbol ester induce tyrosine phosphorylation of Nirs. Moreover, PYK2 and Nirs exhibit similar expression patterns in several regions of the brain and retina. In addition, PYK2-Nir complexes are detected in lysates prepared from cultured cells or from brain tissues. Finally, the Nir1-encoding gene is located at human chromosome 17p13.1, in proximity to a locus responsible for several human retinal diseases. We propose that the Nir and rdgB proteins represent a new family of evolutionarily conserved PYK2-binding proteins that play a role in the control of calcium and phosphoinositide metabolism downstream of G-protein-coupled receptors.  (+info)

Down-regulation of RpS21, a putative translation initiation factor interacting with P40, produces viable minute imagos and larval lethality with overgrown hematopoietic organs and imaginal discs. (13/69323)

Down-regulation of the Drosophila ribosomal protein S21 gene (rpS21) causes a dominant weak Minute phenotype and recessively produces massive hyperplasia of the hematopoietic organs and moderate overgrowth of the imaginal discs during larval development. Here, we show that the S21 protein (RpS21) is bound to native 40S ribosomal subunits in a salt-labile association and is absent from polysomes, indicating that it acts as a translation initiation factor rather than as a core ribosomal protein. RpS21 can interact strongly with P40, a ribosomal peripheral protein encoded by the stubarista (sta) gene. Genetic studies reveal that P40 underexpression drastically enhances imaginal disc overgrowth in rpS21-deficient larvae, whereas viable combinations between rpS21 and sta affect the morphology of bristles, antennae, and aristae. These data demonstrate a strong interaction between components of the translation machinery and showed that their underexpression impairs the control of cell proliferation in both hematopoietic organs and imaginal discs.  (+info)

DEF-1, a novel Src SH3 binding protein that promotes adipogenesis in fibroblastic cell lines. (14/69323)

The Src homology 3 (SH3) motif is found in numerous signal transduction proteins involved in cellular growth and differentiation. We have purified and cloned a novel protein, DEF-1 (differentiation-enhancing factor), from bovine brain by using a Src SH3 affinity column. Ectopic expression of DEF-1 in fibroblasts resulted in the differentiation of a significant fraction of the culture into adipocytes. This phenotype appears to be related to the induction of the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), since DEF-1 NIH 3T3 cells demonstrated augmented levels of PPARgamma mRNA and, when treated with activating PPARgamma ligands, efficient induction of differentiation. Further evidence for a role for DEF-1 in adipogenesis was provided by heightened expression of DEF-1 mRNA in adipose tissue isolated from obese and diabetes mice compared to that in tissue isolated from wild-type mice. However, DEF-1 mRNA was detected in multiple tissues, suggesting that the signal transduction pathway(s) in which DEF-1 is involved is not limited to adipogenesis. These results suggest that DEF-1 is an important component of a signal transduction process that is involved in the differentiation of fibroblasts and possibly of other types of cells.  (+info)

The nuclear receptor superfamily has undergone extensive proliferation and diversification in nematodes. (15/69323)

The nuclear receptor (NR) superfamily is the most abundant class of transcriptional regulators encoded in the Caenorhabditis elegans genome, with >200 predicted genes revealed by the screens and analysis of genomic sequence reported here. This is the largest number of NR genes yet described from a single species, although our analysis of available genomic sequence from the related nematode Caenorhabditis briggsae indicates that it also has a large number. Existing data demonstrate expression for 25% of the C. elegans NR sequences. Sequence conservation and statistical arguments suggest that the majority represent functional genes. An analysis of these genes based on the DNA-binding domain motif revealed that several NR classes conserved in both vertebrates and insects are also represented among the nematode genes, consistent with the existence of ancient NR classes shared among most, and perhaps all, metazoans. Most of the nematode NR sequences, however, are distinct from those currently known in other phyla, and reveal a previously unobserved diversity within the NR superfamily. In C. elegans, extensive proliferation and diversification of NR sequences have occurred on chromosome V, accounting for > 50% of the predicted NR genes.  (+info)

Molecular cloning of a cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from liver of Sparus aurata: nutritional regulation of enzyme expression. (16/69323)

A cDNA clone encoding full-length 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2, 6-P2ase) was isolated and sequenced from a Sparus aurata liver cDNA library. The 2527 bp nucleotide sequence of the cDNA contains a 73 bp 5'-untranslated region (5'-UTR), an open reading frame that encodes a 469 amino acid protein and 1041 bp at the 3'-UTR. The deduced amino acid sequence is the first inferred 6PF-2-K/Fru-2, 6-P2ase in fish. The kinase and bisphosphatase domains, where the residues described as crucial for the mechanism of reaction of the bifunctional enzyme are located, present a high degree of homology with other liver isoenzymes. However, within the first 30 amino acids at the N-terminal regulatory domain of the fish enzyme a low homology is found. Nutritional regulation of the 6-phosphofructo-2-kinase activity, together with immunodetectable protein and mRNA levels of 6PF-2-K/Fru-2,6-P2ase, was observed after starvation and refeeding. In contrast to results previously described for rat liver, the decrease in immunodetectable protein and kinase activity caused by starvation was associated in the teleostean fish to a decrease in mRNA levels.  (+info)