Oxidative refolding of recombinant prochymosin. (1/91)

The disulphide-coupled refolding of recombinant prochymosin from Escherichia coli inclusion bodies was investigated. Prochymosin solubilized from inclusion bodies is endowed with free thiol groups and disulphide bonds. This partially reduced form undergoes renaturation more efficiently than the fully reduced form, suggesting that some native structural elements existing in inclusion bodies and remaining after denaturation function as nuclei to initiate correct refolding. This assumption is supported by the finding that in the solubilized prochymosin molecule the cysteine residues located in the N-terminal domain of the protein are not incorrectly paired with the other cysteines in the C-terminal domain. Addition of GSH/GSSG into the refolding system facilitates disulphide rearrangement and thus enhances renaturation, especially for the fully reduced prochymosin. Based on the results described in this and previous papers [Tang, Zhang and Yang (1994) Biochem. J. 301, 17-20], a model to depict the refolding process of prochymosin is proposed. Briefly, the refolding process of prochymosin consists of two stages: the formation and rearrangement of disulphide bonds occurs at the first stage in a pH11 buffer, whereas the formation and adjustment of tertiary structure leading to the native conformation takes place at the second stage at pH8. The pH11 conditions help polypeptides to refold in such a way as to favour the formation of native disulphide bonds. Disulphide rearrangement, the rate-limiting step during refolding, can be achieved by thiol/disulphide exchange initiated by free thiol groups present in the prochymosin polypeptide, GSH/GSSG or protein disulphide isomerase.  (+info)

New world monkey pepsinogens A and C, and prochymosins. Purification, characterization of enzymatic properties, cDNA cloning, and molecular evolution. (2/91)

Pepsinogens A and C, and prochymosin were purified from four species of adult New World monkeys, namely, common marmoset (Callithrix jacchus), cotton-top tamarin (Saguinus oedipus), squirrel monkey (Saimiri sciureus), and capuchin monkey (Cebus apella). The occurrence of prochymosin was quite unique since this zymogen is known to be neonate-specific and, in primates, it has been thought that the prochymosin gene is not functional. No multiple form has been detected for any type of pepsinogen except that two pepsinogen-A isozymogens were identified in capuchin monkey. Pepsins A and C, and chymosin hydrolyzed hemoglobin optimally at pH 2-2.5 with maximal activities of about 20, 30, and 15 units/mg protein. Pepsins A were inhibited in the presence of an equimolar amount of pepstatin, and chymosins and pepsins C needed 5- and 100-fold molar excesses of pepstatin for complete inhibition, respectively. Hydrolysis of insulin B chain occurred first at the Leu15-Tyr16 bond in the case of pepsins A and chymosins, and at either the Leu15-Tyr16 or Tyr16-Leu17 bond in the case of pepsins C. The presence of different types of pepsins might be advantageous to New World monkeys for the efficient digestion of a variety of foods. Molecular cloning of cDNAs for three types of pepsinogens from common marmoset was achieved. A phylogenetic tree of pepsinogens based on the nucleotide sequence showed that common marmoset diverged from the ancestral primate about 40 million years ago.  (+info)

A basic residue at position 36p of the propeptide is not essential for the correct folding and subsequent autocatalytic activation of prochymosin. (3/91)

Position 36p in the propeptides of gastric aspartic proteinases is generally occupied by lysine or arginine. This has led to the conclusion that a basic residue at this position, which interacts with the active-site aspartates, is essential for folding and activation of the zymogen. Lamb prochymosin has been shown by cDNA cloning to possess glutamic acid at 36p. To investigate the effect of this natural mutation which appears to contradict the proposed role of this residue, calf and lamb prochymosins and their two reciprocal mutants, K36pE and E36pK, respectively, were expressed in Escherichia coli, refolded in vitro, and autoactivated at pH 2 and 4.7. All four zymogens could be activated to active chymosin and, at both pH values, the two proteins with Glu36p showed higher activation rates than the two Lys36p forms. Glu36p was also demonstrated in natural prochymosin isolated from the fourth stomach of lamb, as well as being encoded in the genomes of sheep, goat and mouflon, which belong to the subfamily Caprinae. A conserved basic residue at position 36p of prochymosin is thus not obligatory for its folding or autocatalytic activation. The apparently contradictory results for porcine pepsinogen A [Richter, C., Tanaka, T., Koseki, T. & Yada, R.Y. (1999) Eur. J. Biochem. 261, 746-752] can be reconciled with those for prochymosin. Lys/Arg36p is involved in stabilizing the propeptide-enzyme interaction, along with residues nearer the N-terminus of the propeptide, the sequence of which varies between species. The relative contribution of residue 36p to stability differs between pepsinogen and prochymosin, being larger in the former.  (+info)

Cathepsin D isozymes from porcine spleens. Large scale purification and polypeptide chain arrangements. (4/91)

Six cathepsin D isozymes have been purified from porcine spleen using a large scale purification procedure. Five isozymes, I to V, have an identical molecular weight of 50,000 and are similar in specific activity. Isozymes I to IV contained two polypeptide chains each. The light and heavy chains have Mr = 15,000 and 35,000, respectively. Isozyme V is a single polypeptide. The molecular weight of the sixth isozyme is about 100,000 and it has only 5% of the specific activity of the other isozymes. On Ouchterlony immunodiffusion, an antiserum formed precipitin lines against the urea-denatured isozyme with Mr = 100,000. This immunoreactivity showed immunoidentity with those formed against other isozymes. The NH2-terminal sequence of light chains was identical for the isozymes. This sequence is homologous to the NH2-terminal sequence of other acid proteases, especially near the region of the active center aspartate-32. The NH2-terminal sequence of the single chain, isozyme V, Is apparently the same as the light chain sequence. The NH2-terminal sequence analysis of the heavy chain from isozyme I produced two sets of related sequences, suggesting the prescene of structural microheterogeneity. The carbohydrate analysis of the isozymes, the light chain, and the heavy chain revealed the presence of possibly four attachment sites, with one in the light chain and three in the heavy chain. Each carbohydrate unit contains 2 residues of mannose and 1 residue of glucosamine. The results suggest that the high molecular weight cathepsin D (Mr = 100,000) is the probable precursor of the single chain (Mr = 50,000), which in turn produces the two-chain isozymes. These are likely in vivo processes.  (+info)

Precise and efficient cleavage of recombinant fusion proteins using mammalian aspartic proteases. (5/91)

Expression of recombinant proteins as translational fusions is commonly employed to enhance stability, increase solubility and facilitate purification of the desired protein. In general, such fusion proteins must be cleaved to release the mature protein in its native form. The usefulness of the procedure depends on the efficiency and precision of cleavage and its cost per unit activity. We report here the development of a general procedure for precise and highly efficient cleavage of recombinant fusion proteins using the protease chymosin. DNA encoding a modified pro-peptide from bovine chymosin was fused upstream of hirudin, carp growth hormone, thioredoxin and cystatin coding sequences and expressed in a bacterial Escherichia coli host. Each of the resulting fusion proteins was efficiently cleaved at the junction between the pro-peptide and the desired protein by the addition of chymosin, as determined by activity, N-terminal sequencing and mass spectrometry of the recovered protein. The system was tested further by cleavage of two fusion proteins, cystatin and thioredoxin, sequestered on oilbody particles obtained from transgenic Arabidopsis seeds. Even when the fusion protein was sequestered and immobilized on oilbodies, precise and efficient cleavage was obtained. The precision, efficiency and low cost of this procedure suggest that it could be used in larger scale manufacturing of recombinant proteins which benefit from expression as fusions in their host organism.  (+info)

Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. (6/91)

Unfolded-protein response (UPR) denotes the upregulation of endoplasmic reticulum (ER)-resident chaperone and foldase genes and numerous other genes involved in secretory functions during the accumulation of unfolded proteins into the ER. Overexpression of individual foldases and chaperones has been used in attempts to improve protein production in different production systems. We describe here a novel strategy to improve foreign-protein production. We show that the constitutive induction of the UPR pathway in Aspergillus niger var. awamori can be achieved by expressing the activated form of the transcription factor hacA. This induction enhances the production of Trametes versicolor laccase by up to sevenfold and of bovine preprochymosin by up to 2.8-fold in this biotechnically important fungus. The regulatory range of UPR was studied by analyzing the mRNA levels of novel A. niger var. awamori genes involved in different secretory functions. This revealed both similarities and differences to corresponding studies in Saccharomyces cerevisiae.  (+info)

Calf chymosin as a catalyst of peptide synthesis. (7/91)

Calf chymosin was shown to catalyse peptide synthesis optimally over the range pH 4-5, giving satisfactory yields of methyl esters or p-nitroanilides of benzyloxycarbonyl tetra- to hexa-peptides, provided that hydrophobic amino-acid residues form the new peptide bonds. The effectiveness of the enzyme depends also on the nature of adjacent amino-acid residues. As an aspartate-proteinase with a characteristic specificity pattern chymosin would be useful for the synthesis of middle-length peptides.  (+info)

Characterization and study of a kappa-casein-like chymosin-sensitive linkage. (8/91)

The present report is dealing with the identification, in various unrelated proteins, of protein fragments sharing local sequence and structure similarities with the chymosin-sensitive linkage surrounding the Phe-Met/Ile bond of kappa-caseins. In all these proteins, this linkage is observed within an exposed beta-strand-like structure, as also predicted for kappa-caseins. The structure of one of these fragments, included in glutamine synthetase, particularly superimposes well with the conformation observed for a chymosin inhibitor (CP-113972) within the complex it forms with chymosin and can be similarly accommodated by specificity pockets within the enzyme substrate binding cleft. The effect of the enzyme activity of chymosin was thus tested on glutamine synthetase. Chymosin cut the latter at the Phe-Met linkage, suggesting that this system may locally resemble the kappa-casein/chymosin complex.  (+info)