Loss of chromosomes 2R and 5RS in octoploid triticale selected for agronomic traits. (9/1662)

The advanced lines of octoploid triticale which have been bred for nearly a half century in China show significant improvements in agronomic traits such as plant height, fertility, threshability, maturity and seed plumpness, although no intentional cytological selection had been performed. In this study, eight primary and six advanced lines were analyzed by fluorescence and genomic in situ hybridization to elucidate their chromosome constitutions. In the advanced lines, about 70% of the plants examined had 2n = 56 chromosomes (range: 50 to 58). Almost all advanced lines, however, had lost rye chromosome 2R and the short arm of 5R (5RS). The exceptions were lines Y1005 and Y4683: The former had lost only the 2R chromosome and the latter only 5RS. The reduction of rye chromosomes was compensated by an extra pair of 2D or A-genome (possibly 2A) chromosomes in plants with 2n = 56. This suggests that the loss of 2R and 5RS chromosomes contributes to the improvement of octoploid triticale. Since the plants with chromosome 2R are non-free threshing and chromosome 2D of synthetic wheat is known to carry the Tg (tenacious glumes) gene, it is possible that chromosome 2R carries a gene affecting the threshability, and we carried out selection to remove it. We also discuss the possible relationshipbetween 5RS and the genetic stability of octoploid triticale.  (+info)

Homolog pairing and two kinds of bouquets in the meiotic prophase of rye, Secale cereale. (10/1662)

Chromosome configurations and structures during meiotic prophase were investigated by staining large repeated DNA sequences localized in the subtelomeric regions of all the chromosomes in rye, Secale cereale, in order to clarify when and how homolog pairing and bouquet formation occur. The changes of the spatial locations of chromosomes in the nucleus were investigated by the use of laser confocal microscopy, together with the surface-spreading method of silver nitrate staining to detect the formation of the synaptonemal complex. Homolog pairing in which homologs of four chromatids of a pair of homologs were coaligned in parallel but remained distinctly separate was microscopically detected for the first time in the present study. Homolog pairing showed the following characteristics: (1) it occurred at the leptotene-zygotene transition stage, prior to the formation of nodules and the synaptonemal complex; (2) the chromatin structure of chromosomes was in a state of decondensation; (3) it required no telomere clustering. These data suggest that homolog pairing represents a structure that indicates incipient recombination. After the homolog pairing stage, two kinds of bouquet configuration were found in zygotene. The commonly observed type was a loose bouquet, in which the subtelomeric regions were loosely aggregated. The other type was a definite bouquet, in which almost all the subtelomeric regions were conjugated, but this type was observed only in a limited number of the meiotic prophase cells of some individuals. It was concluded that the former represents the configuration of homologous recombination and the latter that of ectopic recombination.  (+info)

Structural analysis of a Lotus japonicus genome. II. Sequence features and mapping of sixty-five TAC clones which cover the 6.5-mb regions of the genome. (11/1662)

Sixty-five TAC (transformation-competent artificial chromosomes) clones were selected from a genomic library of Lotus japonicus accession MG-20 based on the sequence information of expressed sequences tags (ESTs), cDNA and gene information, and their nucleotide sequences were determined. The average insert size of the TAC clone was approximately 100 kb, and the total length of the sequenced regions in this study is 6,556,100 bp. Together with the nucleotide sequences of 56 TAC clones previously reported, the regions sequenced so far total 12,029,295 bp. By comparison with the sequences in protein and EST databases and by analysis with computer programs for gene modeling, a total of 711 potential protein-encoding genes with known or predicted functions, 239 gene segments and 90 pseudogenes were identified in the newly sequenced regions. The average gene density assigned so far was 1 gene/9140 bp. The average length of the assigned genes was 2.6 kb, which is considerably larger than that assigned in the Arabidopsis thaliana genome (1.9 kb for 6451 genes). Introns were identified in approximately 73% of the potential genes, and the average number and length of the introns per gene were 3.4 and 377 bp, respectively. Simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers were generated based on the nucleotide sequences of the genomic clones obtained, and each clone was mapped onto the linkage map using the F2 mapping population derived from a cross of two accessions of L. japonicus, Gifu B-129 and Miyakojima MG-20. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  (+info)

Characterization of two non-homoeologous nuclear genes encoding mitochondrial alternative oxidase in common wheat. (12/1662)

Mitochondrial alternative oxidase (AOX) is the terminal oxidase responsible for cyanide-insensitive and salicylhydroxamic acid-sensitive respiration. We have isolated two non-homoeologous genes (Waox1a and Waox1c) encoding AOX proteins from common wheat (Triticum aestivum L.). These two genes were orthologous to rice AOX1a and AOX1c, and their exon/intron structure was conserved, as it is in most other plant AOX genes. Southern blot analysis indicated that both Waox1a and Waox1c were located in at least three homoeologous loci and that additional AOX genes with lower homology were present in the genome of common wheat. The Waox1a and Waox1c loci were respectively assigned to the homoeologous group 2 and 6 chromosomes. The steady-state level of Waox1a and Waox1c transcripts increased under cold stress, while only that of Waox1a was increased by cyanide treatment.  (+info)

A single-nucleotide mutation in a gene encoding S-adenosylmethionine synthetase is associated with methionine over-accumulation phenotype in Arabidopsis thaliana. (13/1662)

Met-overaccumulating mutants provide a powerful genetic tool for examining both the regulation of the Met biosynthetic pathway and in vivo developmental responses of gene expression to altered Met levels. We have previously reported the identification of two Arabidopsis thaliana Met over-accumulation (mto) mutants, mto1-1 and mto2-1, that carry mutations in the genes encoding cystathionine gamma-synthase (CGS) and threonine synthase (TS), respectively. A third mutant, mto3-1, has recently been reported to carry a mutation in the gene encoding S-adenosylmethionine synthetase 3 (SAMS3). Here, we report the isolation of a new ethionine-resistant A. thaliana mutant that over-accumulates soluble Met approximately 20-fold in young rosettes. The causal mutation was determined to be a single, recessive mutation that was mapped to chromosome 3. Sequence analysis identified a single nucleotide change in the gene encoding SAMS3 that was distinct from the mto3-1 mutation and altered the amino acid sequence of the enzyme active site. This mutation was therefore referred to as mto3-2. Although Met over-accumulation in the mto3-2 mutant was similar to that in the mto2-1 mutant, CGS mRNA levels did not respond to the mto3-2 mutation and were similar to that in equivalent wild-type plants.  (+info)

Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. (14/1662)

We have assigned all nine linkage groups of a Brassica oleracea genetic map to each of the nine chromosomes of the karyotype derived from mitotic metaphase spreads of the B. oleracea var. alboglabra line A12DHd using FISH. The majority of probes were BACs, with A12DHd DNA inserts, which give clear, reliable FISH signals. We have added nine markers to the existing integrated linkage map, distributed over six linkage groups. BACs were definitively assigned to linkage map positions through development of locus-specific PCR assays. Integration of the cytogenetic and genetic linkage maps was achieved with 22 probes representing 19 loci. Four chromosomes (2, 4, 7, and 9) are in the same orientation as their respective linkage groups (O4, O7, O8, and O6) whereas four chromosomes (1, 3, 5, and 8) and linkage groups (O3, O9, O2, and O1) are in the opposite orientation. The remaining chromosome (6) is probably in the opposite orientation. The cytogenetic map is an important resource for locating probes with unknown genetic map positions and is also being used to analyze the relationships between genetic and cytogenetic maps.  (+info)

Simple sequence repeat (SSR) markers linked to the Ligon lintless (Li(1)) mutant in cotton. (15/1662)

Ligon lintless (Li(1)) is a monogenic, dominant mutant in cotton, whose expression results in extreme reductions in fiber length on mature seed. The objectives of this research were to compare fiber initiation between the Li(1) mutant and TM-1 to reveal the fiber initiation differences between normal and mutant phenotypes, to develop a linkage map of simple sequence repeat (SSR) markers with the Li(1) locus, and to identify the chromosomal location of the Li(1) locus. Comparative scanning electron microscopy studies of fiber development in a normal TM-1 genotype and the near-isogenic Li(1) mutant at 1 and 3 days postanthesis revealed little differences between the two during early stages of development, suggesting that Li(1) gene expression occurs later, probably during the elongation phase. Thirty-eight SSR loci were found to be polymorphic between TM-1 and Li(1) and were used for mapping in an F(2) population. Twenty-two SSR loci, along with Li(1), were located on eight linkage groups, covering a total genetic distance of 218.3 cM. Analysis of individual monosomic and monotelodisomic plants indicated that two SSR loci (MP4030 and MP673) from the Li(1) linkage group were located on chromosome 22.  (+info)

Patterns of nucleotide substitution among simultaneously duplicated gene pairs in Arabidopsis thaliana. (16/1662)

We characterized rates and patterns of synonymous and nonsynonymous substitution in 242 duplicated gene pairs on chromosomes 2 and 4 of Arabidopsis thaliana. Based on their collinear order along the two chromosomes, the gene pairs were likely duplicated contemporaneously, and therefore comparison of genetic distances among gene pairs provides insights into the distribution of nucleotide substitution rates among plant nuclear genes. Rates of synonymous substitution varied 13.8-fold among the duplicated gene pairs, but 90% of gene pairs differed by less than 2.6-fold. Average nonsynonymous rates were approximately fivefold lower than average synonymous rates; this rate difference is lower than that of previously studied nonplant lineages. The coefficient of variation of rates among genes was 0.65 for nonsynonymous rates and 0.44 for synonymous rates, indicating that synonymous and nonsynonymous rates vary among genes to roughly the same extent. The causes underlying rate variation were explored. Our analyses tentatively suggest an effect of physical location on synonymous substitution rates but no similar effect on nonsynonymous rates. Nonsynonymous substitution rates were negatively correlated with GC content at synonymous third codon positions, and synonymous substitution rates were negatively correlated with codon bias, as observed in other systems. Finally, the 242 gene pairs permitted investigation of the processes underlying divergence between paralogs. We found no evidence of positive selection, little evidence that paralogs evolve at different rates, and no evidence of differential codon usage or third position GC content.  (+info)