In-depth view of structure, activity, and evolution of rice chromosome 10. (73/1662)

Rice is the world's most important food crop and a model for cereal research. At 430 megabases in size, its genome is the most compact of the cereals. We report the sequence of chromosome 10, the smallest of the 12 rice chromosomes (22.4 megabases), which contains 3471 genes. Chromosome 10 contains considerable heterochromatin with an enrichment of repetitive elements on 10S and an enrichment of expressed genes on 10L. Multiple insertions from organellar genomes were detected. Collinearity was apparent between rice chromosome 10 and sorghum and maize. Comparison between the draft and finished sequence demonstrates the importance of finished sequence.  (+info)

A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. (74/1662)

From a wild diploid species that is a relative of wheat, Aegilops speltoides, a 301-bp repeat containing 16 copies of a CAA microsatellite was isolated. Southern blot and fluorescence in situ hybridization revealed that approximately 250 bp of the sequence is tandemly arrayed at the centromere regions of A- and B-genome chromosomes of common wheat and rye chromosomes. Although the DNA sequence of this 250-bp repeat showed no notable homology in the databases, the flanking or intervening sequences between the repeats showed high homologies (>82%) to two separate sequences of the gag gene and its upstream region in cereba, a Ty3/gypsy-like retroelement of Hordeum vulgare. Since the amino acid sequence deduced from the 250 bp with seven CAAs showed some similarity ( approximately 53%) to that of the gag gene, we concluded that the 250-bp repeats had also originated from the cereba-like retroelements in diploid wheat such as Ae. speltoides and had formed tandem arrays, whereas the 300-bp repeats were dispersed as a part of cereba-like retroelements. This suggests that some tandem repeats localized at the centromeric regions of cereals and other plant species originated from parts of retrotransposons.  (+info)

Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. (75/1662)

Flow cytometric measurements of nuclear DNA content were performed using ethidium bromide as the DNA stain (internal standard, Hordeum vulgare 'Ditta', 1C = 5.063 pg) in 25 samples belonging to nine diploid species and four varieties of Capsicum: C. chacoense, C. parvifolium, C. frutescens, C. chinense, C. annuum var. annuum, C. baccatum var. baccatum, C. baccatum var. pendulum, C. baccatum var. umbilicatum, C. eximium and C. pubescens, all with 2n = 24, and C. campylopodium with 2n = 26. In addition, one sample each of C. annuum var. annuum and C. pubescens were also analysed using Feulgen densitometry (standard, Allium cepa 'Stuttgarter Riesen', 1C = 16.75 pg). Both staining methods resulted in very similar relative values. Genome size displays significant variation between but not within species (except in C. campylopodium), and contributes to their taxonomic grouping. 1C-values range from 3.34-3.43 pg (3273-3361 Mbp) in C. chacoense and the C. annuum complex to 4.53-5.77 pg (4439-5655 Mbp) in C. campylopodium and C. parvifolium. The data obtained support conclusions on phylogenetic relationships in the genus derived from karyotype analyses using chromosome banding approaches. In Capsicum, constitutive heterochromatin amount is correlated with genome size, except in C. parvifolium, and is regarded as an additive genomic component.  (+info)

Nuclear DNA amounts in Macaronesian angiosperms. (76/1662)

Nuclear DNA contents for 104 Macaronesian angiosperms, with particular attention on Canary Islands endemics, were analysed using propidium iodide flow cytometry. Prime estimates for more than one-sixth of the whole Canarian endemic flora (including representatives of 11 endemic genera) were obtained. The resulting 1C DNA values ranged from 0.19 to 7.21 pg for Descurainia bourgeauana and Argyranthemum frutescens, respectively (about 38-fold difference). The majority of species, however, possessed (very) small genomes, with C-values <1.6 pg. The tendency towards small nuclear DNA contents and genome sizes was confirmed by comparing average values for Macaronesian and non-Macaronesian representatives of individual families, genera and major phylogenetic lineages. Our data support the hypothesis that the insular selection pressures in Macaronesia favour small C-values and genome sizes. Both positive and negative correlations between infrageneric nuclear DNA amount variation and environmental conditions on Tenerife were also found in several genera.  (+info)

Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. (77/1662)

MADS-box transcription factors are key regulators of several plant development processes. Analysis of the complete Arabidopsis genome sequence revealed 107 genes encoding MADS-box proteins, of which 84% are of unknown function. Here, we provide a complete overview of this family, describing the gene structure, gene expression, genome localization, protein motif organization, and phylogenetic relationship of each member. We have divided this transcription factor family into five groups (named MIKC, Malpha, Mbeta, Mgamma, and Mdelta) based on the phylogenetic relationships of the conserved MADS-box domain. This study provides a solid base for functional genomics studies into this important family of plant regulatory genes, including the poorly characterized group of M-type MADS-box proteins. MADS-box genes also constitute an excellent system with which to study the evolution of complex gene families in higher plants.  (+info)

Nuclear genes that encode mitochondrial proteins for DNA and RNA metabolism are clustered in the Arabidopsis genome. (78/1662)

The plant mitochondrial genome is complex in structure, owing to a high degree of recombination activity that subdivides the genome and increases genetic variation. The replication activity of various portions of the mitochondrial genome appears to be nonuniform, providing the plant with an ability to modulate its mitochondrial genotype during development. These and other interesting features of the plant mitochondrial genome suggest that adaptive changes have occurred in DNA maintenance and transmission that will provide insight into unique aspects of plant mitochondrial biology and mitochondrial-chloroplast coevolution. A search in the Arabidopsis genome for genes involved in the regulation of mitochondrial DNA metabolism revealed a region of chromosome III that is unusually rich in genes for mitochondrial DNA and RNA maintenance. An apparently similar genetic linkage was observed in the rice genome. Several of the genes identified within the chromosome III interval appear to target the plastid or to be targeted dually to the mitochondria and the plastid, suggesting that the process of endosymbiosis likely is accompanied by an intimate coevolution of these two organelles for their genome maintenance functions.  (+info)

Cytological and molecular analysis of the Hordeum vulgare-Puccinia triticina nonhost interaction. (79/1662)

Cultivated barley, Hordeum vulgare L., is considered to be a nonhost or intermediate host species for the wheat leaf rust fungus Puccinia triticina. Here, we have investigated, at the microscopic and molecular levels, the reaction of barley cultivars to wheat leaf rust infection. In the nonhost resistant cultivar Cebada Capa, abortion of fungal growth occurred at both pre- and posthaustorial stages, suggesting that defense genes are expressed throughout the development of the inappropriate fungus during the nonhost resistance reaction. In the two barley lines L94 and Bowman, a low level of prehaustorial resistance to P. triticina was observed and susceptibility was comparable to that of wheat control plants. Suppression subtractive hybridization was used to identify genes that are differentially expressed during the nonhost resistance reaction in Cebada Capa as well as during the successful establishment of the inappropriate wheat leaf rust fungus in L94. Northern analysis indicated that two candidate genes, including a barley ortholog of the rice resistance gene Xa21, are putatively involved in nonhost and non-race-specific resistance reactions. In addition, a new gene that is specifically induced during the successful development of the inappropriate fungus P. triticina in barley has been identified.  (+info)

Directed motion of telomeres in the formation of the meiotic bouquet revealed by time course and simulation analysis. (80/1662)

Chromosome movement is critical for homologous chromosome pairing during meiosis. A prominent and nearly universal meiotic chromosome reorganization is the formation of the bouquet, characterized by the close clustering of chromosome ends at the nuclear envelope. We have used a novel method of in vitro culture of rye anthers combined with fluorescent in situ hybridization (FISH) detection of telomeres to quantitatively study bouquet formation. The three-dimensional distribution of telomeres over time was used to obtain a quantitative profile of bouquet formation intermediates. The bouquet formed through a gradual, continuous tightening of telomeres over approximately 6 h. To determine whether the motion of chromosomes was random or directed, we developed a computer simulation of bouquet formation to compare with our observations. We varied the diffusion rate of telomeres and the amount of directional bias in telomere movement. In our models, the bouquet was formed in a manner comparable to what we observed in cultured meiocytes only when the movement of telomeres was actively directed toward the bouquet site, whereas a wide range of diffusion rates were permitted. Directed motion, as opposed to random diffusion, was required to reproduce our observations, implying that an active process moves chromosomes to cause telomere clustering.  (+info)