Proliferative effects of cholecystokinin in GH3 pituitary cells mediated by CCK2 receptors and potentiated by insulin. (1/1430)

1. Proliferative effects of CCK peptides have been examined in rat anterior pituitary GH3 cells, which express CCK2 receptors. 2. CCK-8s, gastrin(1-17) and its glycine-extended precursor G(1-17)-Gly, previously reported to cause proliferation via putative novel sites on AR4-2J and Swiss 3T3 cells, elicited significant dose dependent increases of similar magnitude in [3H]thymidine incorporation over 3 days in serum-free medium of 39 +/- 10% (P < 0.01, n = 20), 37 +/- 8% (P < 0.01, n = 27) and 41 +/- 6% (P < 0.01, n = 36) respectively. 3. CCK-8s and gastrin potentially stimulated mitogenesis (EC50 values 0.12 nM and 3.0 nM respectively), whilst G-Gly displayed similar efficacy but markedly lower potency. L-365,260 consistently blocked each peptide. The CCK2 receptor affinity of G-Gly in GH3 cells was 1.09 microM (1.01;1.17, n = 6) and 5.53 microM (3.71;5.99, n = 4) in guinea-pig cortex. 4. 1 microM G-Gly weakly stimulated Ca2+ increase, eliciting a 104 +/- 21% increase over basal Ca2+ levels, and was blocked by 1 microM L-365,260 whilst CCK-8s (100 nM) produced a much larger Ca2+ response (331 +/- 14%). 5. Insulin dose dependently enhanced proliferative effects of CCK-8s with a maximal leftwards shift of the CCK-8s curve at 100 ng ml(-1) (17 nM) (EC50 decreased 500 fold, from 0.1 nM to 0.2 pM; P < 0.0001). 10 microg ml(-1) insulin was supramaximal reducing the EC50 to 5 pM (P = 0.027) whilst 1 ng ml(-1) insulin was ineffective. Insulin weakly displaced [125I]BHCCK binding to GH3 CCK2 receptors (IC50 3.6 microM). 6. Results are consistent with mediation of G-Gly effects via CCK2 receptors in GH3 cells and reinforce the role of CCK2 receptors in control of cell growth. Effects of insulin in enhancing CCK proliferative potency may suggest that CCK2 and insulin receptors converge on common intracellular targets and indicates that mitogenic stimuli are influenced by the combination of extracellular factors present.  (+info)

Diazepam-binding inhibitor33-50 elicits Ca2+ oscillation and CCK secretion in STC-1 cells via L-type Ca2+ channels. (2/1430)

We recently isolated and characterized 86-amino acid CCK-releasing peptide from porcine intestinal mucosa. The sequence of this peptide is identical to that of porcine diazepam-binding inhibitor (DBI). Intraduodenal administration of DBI stimulates the CCK release and elicits pancreatic secretion in rats. In this study we utilized a murine tumor cell line (STC-1 cells) that contains CCK to examine if DBI directly acts on these cells to stimulate CCK release. We investigated the cellular mechanisms responsible for this action. We showed that DBI33-50, a biologically active fragment of DBI1-86, significantly stimulated CCK secretion in STC-1 cells. This action was abolished by Ca2+-free medium. The mean basal intracellular Ca2+ concentration ([Ca2+]i) was 52 nM in fura 2-loaded STC-1 cells. DBI33-50 (1-1,000 nM) elicited Ca2+ oscillations; DBI33-50 (10 nM) increased the oscillation frequency to 5 cycles/10 min and elicited a net [Ca2+]i increase (peak - basal) to 157 nM. In contrast, bombesin and forskolin caused an initial transient [Ca2+]i followed by a small sustained [Ca2+]i plateau. Withdrawal of extracellular Ca2+ abolished Ca2+ oscillations stimulated by DBI33-50. L-type Ca2+ channel blockers nifedipine and diltiazem (3-10 microM) markedly attenuated DBI-stimulated Ca2+ oscillations. In other cell types L-type Ca2+ channels are activated by cAMP-protein kinase A. DBI33-50 failed to stimulate cAMP formation in STC-1 cells. Similarly, DBI33-50 had no effect on myo-inositol 1,4, 5-trisphosphate concentration ([IP3]), whereas bombesin caused an eightfold increase in [IP3] over basal. In addition, inhibitors of phospholipase C (U-73122), phospholipase A2 (ONO-RS-082), and protein tyrosine kinase (genistein) did not alter the Ca2+ oscillations elicited by DBI33-50. It appears that DBI33-50 acts directly on STC-1 cells to elicit Ca2+ oscillations via the voltage-dependent L-type Ca2+ channels, resulting in the secretion of CCK. Mediation of this action is by intracellular mechanisms independent of the traditional signal transduction pathways, including phospholipase C, phospholipase A2, protein tyrosine kinase, and cAMP systems.  (+info)

The effects of vapreotide, a somatostatin analogue, on gastric acidity, gallbladder emptying and hormone release after 1 week of continuous subcutaneous infusion in normal subjects. (3/1430)

AIMS: Somatostatin analogues (e.g. vapreotide) are used for treatment of acromegaly, endocrine tumours and variceal bleeding. The pharmacodynamic effects of vapreotide have, however, not been documented in the gastrointestinal tract. The aim of this study was to investigate the effects of continuous vapreotide administration on gastric acidity, gallbladder contraction and hormone release. METHODS: Ten healthy males participated in this randomised, placebo-controlled, double-blind, crossover trial. A constant vapreotide (or placebo) infusion (1.5 mg day(-1) s.c.) was given for 7 days with a portable pump. Intragastric pH was monitored on days 2 and 7. Gallbladder volume was sonographically assessed and the maximal ejection fraction was calculated. In addition basal and postprandial plasma levels of gastrin and cholecystokinin (CCK) were measured. RESULTS: After an initial increase in the median 24 h intragastric pH to a value of 2.6 on day 2, vapreotide's effect on pH decreased: (day 7: median pH=1.9; respective placebo values were 1.7 and 1.5). On the same days with vapreotide treatment, gallbladder contraction and plasma levels of CCK were reduced; maximal ejection fractions after meal stimulation were 18% and 20% (respective placebo values were 57% and 62%). Plasma gastrin levels were not changed with vapreotide treatment. CONCLUSIONS: The short lasting effect of vapreotide on intragastric acidity suggests a down-regulation of somatostatin receptors during treatment. The lack of effect on gastrin indicates that the effects on gastric pH are not mediated by gastrin. Constant vapreotide infusion (but not placebo) reduced gallbladder contraction suggesting a long-lasting effect on biliary function.  (+info)

Involvement of RhoA and its interaction with protein kinase C and Src in CCK-stimulated pancreatic acini. (4/1430)

We evaluated intracellular pathways responsible for the activation of the small GTP-binding protein Rho p21 in rat pancreatic acini. Intact acini were incubated with or without CCK and carbachol, and Triton X-100-soluble and crude microsomes were used for Western immunoblotting. When a RhoA-specific antibody was used, a single band at the location of 21 kDa was detected. CCK (10 pM-10 nM) and carbachol (0.1-100 microM) dose dependently increased the amount of immunodetectable RhoA with a peak increase occurring at 3 min. High-affinity CCK-A-receptor agonists JMV-180 and CCK-OPE (1-1,000 nM) did not increase the intensities of the RhoA band, suggesting that stimulation of RhoA is mediated by the low-affinity CCK-A receptor. Although an increase in RhoA did not require the presence of extracellular Ca2+, the intracellular Ca2+ chelator 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM abolished the appearance of the RhoA band in response to CCK and carbachol. The Gq protein inhibitor G protein antagonist-2A (10 microM) and the phospholipase C (PLC) inhibitor U-73122 (10 microM) markedly reduced RhoA bands in response to CCK. The protein kinase C (PKC) activator phorbol ester (10-1,000 nM) dose dependently increased the intensities of the RhoA band, which were inhibited by the PKC inhibitor K-252a (1 microM). The pp60(c-src) inhibitor herbimycin A (6 microM) inhibited the RhoA band in response to CCK, whereas the calmodulin inhibitor W-7 (100 microM) and the phosphoinositide 3-kinase inhibitor wortmannin (6 microM) had no effect. RhoA was immunoprecipitated with Src, suggesting association of RhoA with Src. Increases in mass of this complex were observed with CCK stimulation. In permeabilized acini, the Rho inhibitor Clostridium botulinum C3 exoenzyme dose dependently inhibited amylase secretion evoked by a Ca2+ concentration with an IC50 of C3 exoenzyme at 1 ng/ml. We concluded that the small GTP-binding protein RhoA p21 exists in pancreatic acini and appears to be involved in the mediation of pancreatic enzyme secretion evoked by CCK and carbachol. RhoA pathways are involved in the activation of PKC and Src cascades via Gq protein and PLC.  (+info)

Long-term CCK-leptin synergy suggests a role for CCK in the regulation of body weight. (5/1430)

The gut peptide CCK is a nutrient-related signal important to the control of food intake. In the present studies, we observed that a single intraperitoneal injection of CCK (1-2 microgram/kg) given 2-3 h after intracerebroventricular leptin (2-5 microgram) reduced body weight and chow intake over the ensuing 48 h more than did leptin alone. CCK alone had no effect on either 48-h chow intake or body weight but significantly reduced feeding during a 30-min sucrose test. However, reduction of 30-min sucrose intake by CCK was not enhanced by prior intracerebroventricular leptin. The present data suggest that CCK can contribute to the regulation of body weight when central leptin levels are elevated.  (+info)

Hormone-induced secretory and nuclear translocation of calmodulin: oscillations of calmodulin concentration with the nucleus as an integrator. (6/1430)

Many important enzyme activities are regulated by Ca2+-dependent interactions with calmodulin (CaM). Some of the most important targets for CaM action are in the nucleus, and Ca2+-dependent CaM translocation into this organelle has been reported. Hormone-evoked cytosolic Ca2+ signals occur physiologically as oscillations, but, so far, oscillations in CaM concentration have not been described. We loaded fluorescent-labeled CaM into pancreatic acinar cells and monitored the fluorescence in various regions by confocal microscopy. Sustained high concentrations of the hormone cholecystokinin or the neurotransmitter acetylcholine evoked a transient movement of cytosolic CaM from the basal nonnuclear area into the secretory granule region and, thereafter, a more substantial and prolonged translocation of CaM into the nucleoplasm. About 50% of the CaM that bound Ca2+ translocated. At a lower hormone concentration, evoking Ca2+ oscillations, regular spikes of increased CaM concentration were seen in the secretory granule region with mirror image spikes of decreased CaM concentration in the basal nonnuclear region. The nucleus was able to integrate the Ca2+ spike-evoked pulses of CaM translocation into a sustained elevation of the nucleoplasmic concentration of this protein.  (+info)

Supraspinal neurotensin-induced antianalgesia in mice is mediated by spinal cholecystokinin. (7/1430)

Intracerebral injection of neurotensin into specific brain loci in rats produces hyperalgesia due to the release of cholecystokinin (CCK) in the spinal cord. The present purpose was to show in another species that neurotensin can antagonize the antinociceptive action of morphine through the spinal CCK mechanism in mice. Neurotensin given intracerebroventricularly (i.c.v.) at doses higher than 100 ng produced antinociception in the tail flick test. However, at lower doses between 1 pg to 25 ng, neurotensin antagonized the antinociceptive action of morphine given intrathecally (i.t.), thus demonstrating the antianalgesic activity of neurotensin. The rightward shift in the morphine dose-response curve produced by i.c.v. neurotensin was eliminated by an i.t. pretreatment with CCK8 antibody (5 microl of antiserum solution diluted 1:1000). I.t. administration of lorglumide, a CCK(A)-receptor antagonist (10-1000 ng), and PD135,158, a CCK(B)-receptor antagonist (250-500 ng), also eliminated the antianalgesic action of neurotensin. Thus, the mechanism of the antianalgesic action of neurotensin given i.c.v. involved spinal CCK. This mode of action is similar to that for the antianalgesic action of supraspinal pentobarbital which also involves spinal CCK.  (+info)

Effects of alverine citrate on cat intestinal mechanoreceptor responses to chemical and mechanical stimuli. (8/1430)

BACKGROUND: Alverine citrate is commonly used in the treatment of painful affections of the colon. AIM: To determine whether alverine citrate acts on the vagal sensory endings. METHODS: Unitary recordings were performed at the level of the vagal fibres in the nodose ganglion of anaesthetized cats using extracellular glass microelectrodes, and the patterns of response to chemical and mechanical stimuli applied to identified vagal intestinal mechanoreceptors were studied. RESULTS: The intestinal mechanoreceptors located at the endings of type C vagal fibres responded mainly to mechanical stimuli (distension and contraction), but also responded to chemical substances (cholecystokinin and substance P). The most conspicuous effect of alverine (2 mg/kg) was that it significantly inhibited the pattern of vagal activity produced in response to either cholecystokinin (5-10 microg/kg), substance P (5-10 microg/kg) or phenylbiguanide (5-10 microg/kg), a 5-HT3 receptor agonist. On the other hand, the unitary vagal response to the mechanical distension was slightly enhanced by alverine, as was any spontaneous activity present. CONCLUSIONS: Based on the present data, alverine citrate can be said to decrease the sensitivity of the intestinal mechanoreceptors, which is consistent with its previously established anti-spasmodic effects.  (+info)