A novel plant nuclear gene encoding chloroplast ribosomal protein S9 has a transit peptide related to that of rice chloroplast ribosomal protein L12. (41/4503)

We have cloned a novel nuclear gene for a ribosomal protein of rice and Arabidopsis that is like the bacterial ribosomal protein S9. To determine the subcellular localization of the gene product, we fused the N-terminal region and green fluorescent protein and expressed it transiently in rice seedlings. Localized fluorescence was detectable only in chloroplasts, indicating that this nuclear gene encodes chloroplast ribosomal protein S9. The N-terminal region of rice ribosomal protein S9 was found to have a high sequence similarity to the transit peptide region of the rice chloroplast ribosomal protein L12, suggesting that these transit peptides have a common lineage.  (+info)

The Qo-site inhibitor DBMIB favours the proximal position of the chloroplast Rieske protein and induces a pK-shift of the redox-linked proton. (42/4503)

The interaction of the inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) with the Rieske protein of the chloroplast b6f complex has been studied by EPR. All three redox states of DBMIB were found to interact with the iron-sulphur cluster. The presence of the oxidised form of DBMIB altered the equilibrium distribution of the Rieske protein's conformational substates, strongly favouring the proximal position close to heme bL. In addition to this conformational effect, DBMIB shifted the pK-value of the redox-linked proton involved in the iron-sulphur cluster's redox transition by about 1.5 pH units towards more acidic values. The implications of these results with respect to the interaction of the native quinone substrate and the Rieske cluster in cytochrome bc complexes are discussed.  (+info)

Cloning and characterization of the dihydrolipoamide S-acetyltransferase subunit of the plastid pyruvate dehydrogenase complex (E2) from Arabidopsis. (43/4503)

An Arabidopsis cDNA encoding the dihydrolipoamide S-acetyltransferase subunit of the plastid pyruvate dehydrogenase complex (E2) was isolated from a lambdaPRL2 library. The cDNA is 1709 bp in length, with a continuous open reading frame of 1440 bp encoding a protein of 480 amino acids with a calculated molecular mass of 50,079 D. Southern analysis suggests that a single gene encodes plastid E2. The amino acid sequence has characteristic features of an acetyltransferase, namely, distinct lipoyl, subunit-binding, and catalytic domains, although it is unusual in having only a single lipoyl domain. The in vitro synthesized plastid E2 precursor protein has a relative molecular weight of 67,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon incubation of the precursor with pea (Pisum sativum) chloroplasts, it was imported and processed to a mature-sized relative molecular weight of 60,000. The imported protein was located in the chloroplast stroma, associated with the endogenous pyruvate dehydrogenase. Catalytically active recombinant plastid E2 was purified as a glutathione S-transferase fusion protein. Analysis of plastid E2 mRNA by reverse transcriptase-polymerase chain reaction showed highest expression in flowers, followed by leaves, siliques, and roots. The results of immunoblot analysis indicate that protein expression was similar in roots and flowers, less similar in leaves, and even less similar in siliques. This is the first report, to our knowledge, describing a plastid E2.  (+info)

Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. (44/4503)

Superoxide dismutase (SOD) gene expression was investigated to elucidate its role in drought and freezing tolerance in spring and winter wheat (Triticum aestivum). cDNAs encoding chloroplastic Cu/ZnSODs and mitochondrial MnSODs were isolated from wheat. MnSOD and Cu/ZnSOD genes were mapped to the long arms of the homologous group-2 and -7 chromosomes, respectively. Northern blots indicated that MnSOD genes were drought inducible and decreased after rehydration. In contrast, Cu/ZnSOD mRNA was not drought inducible but increased after rehydration. In both spring and winter wheat seedlings exposed to 2 degrees C, MnSOD transcripts attained maximum levels between 7 and 49 d. Transcripts of Cu/ZnSOD mRNA were detected sooner in winter than in spring wheat; however, they disappeared after 21 d of acclimation. Transcripts of both classes of SOD genes increased during natural acclimation in both spring and winter types. Exposure of fully hardened plants to three nonlethal freeze-thaw cycles resulted in Cu/Zn mRNA accumulation; however, MnSOD mRNA levels declined in spring wheat but remained unchanged in winter wheat. The results of the dehydration and freeze-thaw-cycle experiments suggest that winter wheat has evolved a more effective stress-repair mechanism than spring wheat.  (+info)

A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. (45/4503)

Dark-grown Chlamydomonas reinhardtii cultures that were illuminated at low fluence rates before exposure to high-light conditions exhibited a faster rate of recovery from photoinhibition than did dark-grown cells that were directly exposed to photoinhibitory conditions. This pretreatment has been shown to induce the expression of several nuclear heat shock protein 70 (HSP70) genes, including HSP70B, encoding a chloroplast-localized chaperone. To investigate a possible role of plastidic HSP70B in photoprotection and repair of photosystem II, which is the major target of photoinhibition, we have constructed strains overexpressing or underexpressing HSP70B. The effect of light stress on photosystem II in nuclear transformants harboring HSP70B in the sense or antisense orientation was monitored by measuring variable fluorescence, flash-induced charge separation, and relative amounts of various photosystem II polypeptides. Underexpression of HSP70B caused an increased light sensitivity of photosystem II, whereas overexpression of HSP70B had a protective effect. Furthermore, the reactivation of photosystem II after photoinhibition was enhanced in the HSP70B-overexpressing strain when compared with the wild type, both in the presence or absence of synthesis of chloroplast-encoded proteins. Therefore, HSP70B may participate in vivo both in the molecular protection of the photosystem II reaction centers during photoinhibition and in the process of photosystem II repair.  (+info)

Insertion of atToc34 into the chloroplastic outer membrane is assisted by at least two proteinaceous components in the import system. (46/4503)

Toc34 is a member of the outer membrane translocon complex that mediates the initial stage of protein import into chloroplasts. Toc34, like most outer membrane proteins, is synthesized in the cytosol at its mature size without a cleavable transit peptide. The majority of outer membrane proteins do not require thermolysin-sensitive components on the chloroplastic surface or ATP for their insertion into the outer membrane. However, different results have been obtained concerning the factors required for Toc34 insertion into the outer membrane. Using an Arabidopsis homologue of pea Toc34, atToc34, we show that the insertion of atToc34 was greatly reduced by thermolysin pretreatment of chloroplasts as assayed either by protease digestion or by alkaline extraction. The insertion was also dependent on the presence of ATP or GTP. A mutant of atToc34 with the GTP-binding domain deleted still required ATP for optimal insertion, indicating that ATP was used by other protein components in the import system. The ATP-supported insertion was observed even in thermolysin-pretreated chloroplasts, suggesting that the protein component responsible for ATP-stimulated insertion is a different protein from the thermolysin-sensitive component that assists atToc34 insertion.  (+info)

Chloroplast precursor protein translocon. (47/4503)

Chloroplasts are believed to have originated from a photosynthetic, prokaryotic ancestor. As the result of endosymbiotic evolution, most of the genes of the endocytobiont were displaced to the host nucleus. Today's chloroplasts must import most of their proteins from the cytosol as precursors. Oligomeric protein complexes in the chloroplast outer and inner envelope membranes are responsible for the specific recognition and membrane translocation of precursor proteins. The translocon at the outer membrane of chloroplasts and the inner membrane of chloroplasts act jointly during the import process. Several translocon subunits have been partially characterized in their molecular structure and function. Initial evidence indicates the prokaryotic origin of some chloroplast translocon components.  (+info)

Chloroplast thioredoxin mutants without active-site cysteines facilitate the reduction of the regulatory disulphide bridge on the gamma-subunit of chloroplast ATP synthase. (48/4503)

The activity of the chloroplast H+-ATPase (CFoCF1) is regulated by the proton electrochemical membrane potential and the reduction or the formation of the disulphide bridge on the gamma-subunit mediated by chloroplast thioredoxins (Trx). The latter regulation also applies to the water-soluble portion of CFoCF1 (CF1) and includes two successive steps, namely the binding of Trx to CF1 and the subsequent reduction or oxidation of CF1. To study this process thoroughly, a new expression system for spinach Trx-f and Trx-m was designed. In the presence of dithiothreitol (DTT) both forms of the expressed Trx could reduce the disulphide bridge on the gamma-subunit of CF1 and thus activate the ATPase. Trx mutants deficient in the internal, or both, cysteines of the active site were designed to study the details of the interaction. The Trx mutant proteins could still activate CF1-ATPase in the presence of DTT and they also increased the apparent affinity of CF1 for DTT. This implies that the binding of Trx to the CF1 gamma-subunit induces a conformational change facilitating the reduction of the disulphide bridge, and partially explains the high efficiency of Trx as a reductant in vivo.  (+info)