Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. (1/1097)

The role of the Trichoderma harzianum endochitinase (Ech42) in mycoparasitism was studied by genetically manipulating the gene that encodes Ech42, ech42. We constructed several transgenic T. harzianum strains carrying multiple copies of ech42 and the corresponding gene disruptants. The level of extracellular endochitinase activity when T. harzianum was grown under inducing conditions increased up to 42-fold in multicopy strains as compared with the wild type, whereas gene disruptants exhibited practically no activity. The densities of chitin labeling of Rhizoctonia solani cell walls, after interactions with gene disruptants were not statistically significantly different than the density of chitin labeling after interactions with the wild type. Finally, no major differences in the efficacies of the strains generated as biocontrol agents against R. solani or Sclerotium rolfsii were observed in greenhouse experiments.  (+info)

Role of surface proteins in Vibrio cholerae attachment to chitin. (2/1097)

The role of surface proteins in Vibrio cholerae attachment to chitin particles in vitro was studied. Treatment of V. cholerae O1 ATCC 14034 and ATCC 14035 with pronase E reduced the attachment of bacteria to chitin particles by 57 to 77%. A statistically significant reduction was also observed when the attachment to chitin was evaluated in the presence of homologous Sarkosyl-insoluble membrane proteins (MPs) (67 to 84%), N-acetylglucosamine (GlcNAc) (62%), the sugar that makes up chitin, and wheat germ agglutinin (40 to 56%), a lectin that binds GlcNAc. The soluble oligomers N,N'-diacetylchitobiose or N,N', N"-triacetylchitotriose caused an inhibition of 14 to 23%. Sarkosyl-insoluble MPs able to bind chitin particles were isolated and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; two of these peptides (molecular sizes, 36 and 53 kDa) specifically bind GlcNAc.  (+info)

Proteolytic activation and inactivation of chitin synthetase from Mucor rouxii. (3/1097)

Crude chitin synthetase preparations from the mycelial and yeast forms of Mucor rouxii behaved differently. The mycelial preparations, incubated at 28 degrees C, lost virtually all chitin synthetase activity in a few hours; by contrast, the activity of enzyme preparations from yeast cells increased several fold during similar incubations. These spontaneous changes were probably caused by endogenous protease(s). Seemingly, the chitin synthetase in yeast preparations was present mainly in a latent, 'zymogenic', form that was activated by proteases. In the mycelial preparations, chitin synthetase was present mainly in an active state and was rapidly degraded by endogenous proteolysis. Exogenous proteases accelerated activation and destruction of chitin synthetase; an acid protease from Rhizopus chinensis was the most effective activator. The activation of chitin synthetase was inhibited by a soluble protein in the cell-free extract. Treatment with the detergent Brij 36T stabilized the chitin synthetase of crude preparations against spontaneous changes. Stabilized preparations were rapidly activated by exogenous proteases. The different behaviour of chitin synthetases in crude extracts of mycelium and yeast cells is consistent with, and perhaps partially responsible for, the differences in wall construction between mycelial and yeast forms of M. rouxii.  (+info)

KNR4, a suppressor of Saccharomyces cerevisiae cwh mutants, is involved in the transcriptional control of chitin synthase genes. (4/1097)

The KNR4 gene, originally isolated by complementation of a K9 killer-toxin-resistant mutant displaying reduced levels of both 1,3-beta-glucan and 1,3-beta-glucan synthase activity, was recloned from a YCp50 genomic library as a suppressor of Saccharomyces cerevisiae calcofluor-white-hypersensitive (cwh) mutants. In these mutants, which were characterized by increased chitin levels, the suppressor effect of KNR4 resulted, for some of them, in a lowering of polymer content to close to wild-type level, with no effect on the contents of beta-glucan and mannan. In all cases, this effect was accompanied by a strong reduction in mRNA levels corresponding to CHS1, CHS2 and CHS3, encoding chitin synthases, without affecting expression of FKS1 and RHO1, two genes encoding the catalytic subunit and a regulatory component of 1,3-beta-glucan synthase, respectively. Overexpression of KNR4 also inhibited expression of CHS genes in wild-type strains and in two other cwh mutants, whose sensitivity to calcofluor white was not suppressed by this gene. The physiological relevance of the KNR4 transcriptional effect was addressed in two different ways. In a wild-type strain exposed to alpha-factor, overexpression of this gene inhibited CHS1 induction and delayed shmoo formation, two events which are triggered in response to the pheromone, whereas it did not affect bud formation and cell growth in a chs1 chs2 double mutant. A chimeric protein made by fusing green fluorescent protein to the C terminus of Knr4p which fully complemented a knr4delta mutation was found to localize in patches at presumptive bud sites in unbudded cells and at the incipient bud site during bud emergence. Taken together, these results demonstrate that KNR4 has a regulatory role in chitin deposition and in cell wall assembly. A mechanism by which this gene affects expression of CHS genes is proposed.  (+info)

Mode of action of chitin deacetylase from Mucor rouxii on N-acetylchitooligosaccharides. (5/1097)

The mode of action of chitin deacetylase from the fungus Mucor rouxii on N-acetylchitooligosaccharides with a degree of polymerization 1-7 has been elucidated. Identification of the sequence of chitin oligomers following enzymatic deacetylation was verified by the alternative use of two specific exo-glycosidases in conjunction with HPLC. The results were further verified by 1H-NMR spectroscopy. It was observed that the length of the oligomer is important for enzyme action. The enzyme cannot effectively deacetylate chitin oligomers with a degree of polymerization lower than three. Tetra-N-acetylchitotetraose and penta-N-acetylchitopentaose are fully deacetylated by the enzyme, while in the case of tri-N-acetylchitotriose, hexa-N-acetylchitohexaose and hepta-N-acetylchitoheptaose the reducing-end residue always remains intact. Furthermore, the enzyme initially removes an acetyl group from the nonreducing-end residue of all chitin oligomers with a degree of polymerization higher than 2, and further catalyses the hydrolysis of the following acetamido groups in a processive fashion. The results are in agreement with the mode of action that the same enzyme exhibits on partially deacetylated water soluble chitosan polymers.  (+info)

Multiple genes involved in chitin degradation from the marine bacterium Pseudoalteromonas sp. strain S91. (6/1097)

A cluster of three closely linked chitinase genes organized in the order chiA, chiB and chiC, with the same transcriptional direction, and two unlinked genes, chiP and chiQ, involved in chitin degradation in Pseudoalteromnas sp. strain S91 were cloned, sequenced and characterized. The deduced amino acid sequences revealed that ChiA, ChiB and ChiC exhibited similarities to chitinases belonging to family 18 of the glycosyl hydrolases while ChiP and ChiQ belonged to family 20. ChiP and ChiQ showed different enzymic activities against fluorescent chitin analogues, but neither was able to degrade colloidal chitin. ChiA possessed chitinase activity but did not bind chitin; ChiB bound chitin but had no chitinase activity; ChiC possessed strong chitinase activity and also bound chitin. Production of ChiC in S91 appeared to be controlled by chiA expression, since insertion of a transposon into the ORF of chiA resulted in the loss of chitinase activity as well as loss of ChiC proteins in a chitinase-negative mutant. In Escherichia coli, ChiC appeared to be expressed from its own promoter.  (+info)

A nod factor binding lectin with apyrase activity from legume roots. (7/1097)

A lectin isolated from the roots of the legume, Dolichos biflorus, binds to Nod factors produced by rhizobial strains that nodulate this plant and has a deduced amino acid sequence with no significant homology to any lectin reported to date. This lectin also is an enzyme that catalyzes the hydrolysis of phosphoanhydride bonds of nucleoside di- and triphosphates; the enzyme activity is increased in the presence of carbohydrate ligands. This lectin-nucleotide phosphohydrolase (LNP) has a substrate specificity characteristic of the apyrase category of phosphohydrolases, and its sequence contains four motifs characteristic of this category of enzymes. LNP is present on the surface of the root hairs, and treatment of roots with antiserum to LNP inhibits their ability to undergo root hair deformation and to form nodules on exposure to rhizobia. These properties suggest that this protein may play a role in the rhizobium-legume symbiosis and/or in a related carbohydrate recognition event endogenous to the plant.  (+info)

Chitinases from uncultured marine microorganisms. (8/1097)

Our understanding of the degradation of organic matter will benefit from a greater appreciation for the genes encoding enzymes involved in the hydrolysis of biopolymers such as chitin, one of the most abundant polymers in nature. To isolate representative and abundant chitinase genes from uncultivated marine bacteria, we constructed libraries of genomic DNA isolated from coastal and estuarine waters. The libraries were screened for genes encoding proteins that hydrolyze a fluorogenic analogue of chitin, 4-methylumbelliferyl beta-D-N,N'-diacetylchitobioside (MUF-diNAG). The abundance of clones capable of MUF-diNAG hydrolysis was higher in the library constructed with DNA from the estuary than in that constructed with DNA from coastal waters, although the abundance of positive clones was also dependent on the method used to screen the library. Plaque assays revealed nine MUF-diNAG-positive clones of 75,000 screened for the estuarine sample and two clones of 750,000 for the coastal sample. A microtiter plate assay revealed approximately 1 positive clone for every 500 clones screened in the coastal library. The number of clones detected with the plaque assay was consistent with estimates of the portion of culturable bacteria that degrade chitin. Our results suggest that culture-dependent methods do not greatly underestimate the portion of marine bacterial communities capable of chitin degradation.  (+info)