Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments. (1/202)

We characterized the interaction of Acanthamoeba actophorin, a member of ADF/cofilin family, with filaments of amoeba and rabbit skeletal muscle actin. The affinity is about 10 times higher for muscle actin filaments (Kd = 0.5 microM) than amoeba actin filaments (Kd = 5 microM) even though the affinity for muscle and amoeba Mg-ADP-actin monomers (Kd = 0.1 microM) is the same (Blanchoin, L., and Pollard, T. D. (1998) J. Biol. Chem. 273, 25106-25111). Actophorin binds slowly (k+ = 0.03 microM-1 s-1) to and dissociates from amoeba actin filaments in a simple bimolecular reaction, but binding to muscle actin filaments is cooperative. Actophorin severs filaments in a concentration-dependent fashion. Phosphate or BeF3 bound to ADP-actin filaments inhibit actophorin binding. Actophorin increases the rate of phosphate release from actin filaments more than 10-fold. The time course of the interaction of actophorin with filaments measured by quenching of the fluorescence of pyrenyl-actin or fluorescence anisotropy of rhodamine-actophorin is complicated, because severing, depolymerization, and repolymerization follows binding. The 50-fold higher affinity of actophorin for Mg-ADP-actin monomers (Kd = 0.1 microM) than ADP-actin filaments provides the thermodynamic basis for driving disassembly of filaments that have hydrolyzed ATP and dissociated gamma-phosphate.  (+info)

Exposure of cultured murine peritoneal macrophages to low concentrations of beryllium induces increases in intracellular calcium concentrations and stimulates DNA synthesis. (2/202)

Exposure of humans to beryllium dusts can induce a specific form of chronic pneumonitis that consists mainly of noncaseating granulomas in the lungs. Multiple studies have documented both genetic and immune components of chronic berylliosis. Much work has focused on T cells and their reactivity in berylliosis, but less work has focused on the end effector cells in granulomatous inflammation, macrophages. Because macrophages must become activated to form granulomas, and they become activated by responding to numerous immunomodulatory signals, we investigated the effects of beryllium (BeCl2) on a central signal transduction pathway in macrophages, increases in intracellular calcium ([Ca2+]i). Exposure of cultured murine peritoneal macrophages to low, nontoxic concentrations induced successive spikes or oscillations in [Ca2+]i. Concentrations as low as 5 nM induced significant increases in [Ca2+]i. The source of the increased [Ca2+]i was exclusively extracellular in that increases in [Ca2+]i could be completely blocked by chelating extracellular Ca2+, were inhibited by the Ca2+ channel blocker verapamil, and exposure of macrophages to BeCl2 had no effect on IP3 concentrations. DNA synthesis, a Ca2+-sensitive function, was enhanced in dividing 1LN cells and induced de novo in quiescent macrophages. Furthermore, BeCl2 enhanced DNA synthesis in the absence of coexposure to the protein kinase C activator phorbol myristate acetate. These data support the hypothesis that beryllium toxicity is in part the result of altered Ca2+ metabolism in mononuclear phagocytes consequent to reversible opening of plasma membrane channels.  (+info)

Identification of pathogenic T cells in patients with beryllium-induced lung disease. (3/202)

Chronic beryllium disease (CBD) is caused by beryllium exposure and is characterized by granulomatous inflammation with accumulation of CD4+ T cells in the lung. We analyzed TCR beta-chain and alpha-chain genes expressed by these CD4+ T cells. In the lungs of individual patients, as well as among four of five CBD patients studied, different oligoclonal expansions within the Vbeta3 subset were found to express homologous or even identical CDR3 amino acid sequences. These related expansions were specific for CBD patients, were compartmentalized to lung, and persisted at high frequency in patients with active disease. Limiting dilution cloning and analysis of coexpressed TCR alpha-chain genes confirmed that these TCRs were selectively expanded by a common Ag involving beryllium. Overall, homologous TCR beta- and alpha-chains showed identical V regions and invariant charged residues within the CDR3 but considerable variability in TCRJ usage. Remarkably, CBD patients expressing nearly identical TCRs did not share common HLA-DRB1 or DQ alleles. These results implicate particular CD4+ cells in the pathogenesis of CBD and provide insight into how beryllium is recognized in human disease.  (+info)

Partial IL-10 inhibition of the cell-mediated immune response in chronic beryllium disease. (4/202)

Chronic beryllium disease (CBD) provides a human disorder in which to study the delayed type IV hypersensitivity response to persistent Ag that leads to noncaseating pulmonary granuloma formation. We hypothesized that, in CBD, failure of IL-10 to modulate the beryllium-specific, cell-mediated immune response would result in persistent, maximal cytokine production and T lymphocyte proliferation, thus contributing to the development of granulomatous lung disease. To test this hypothesis, we used bronchoalveolar lavage cells from control and CBD subjects to evaluate the beryllium salt-specific production of endogenous IL-10 and the effects of exogenous human rIL-10 (rhIL-10) on HLA expression, on the production of IL-2, IFN-gamma, and TNF-alpha, and on T lymphocyte proliferation. Our data demonstrate that beryllium-stimulated bronchoalveolar lavage cells produce IL-10, and the neutralization of endogenous IL-10 does not increase significantly cytokine production, HLA expression, or T lymphocyte proliferation. Second, the addition of excess exogenous rhIL-10 partially inhibited the beryllium-stimulated production of IL-2, IFN-gamma, and TNF-alpha; however, we measured no change in T lymphocyte proliferation or in the percentage of alveolar macrophages expressing HLA-DP. Interestingly, beryllium salts interfered with an IL-10-stimulated decrease in the percentage of alveolar macrophages expressing HLA-DR. We conclude that, in the CBD-derived, beryllium-stimulated cell-mediated immune response, low levels of endogenous IL-10 have no appreciable effect; exogenous rhIL-10 has a limited effect on cytokine production and no effect on T lymphocyte proliferation or HLA expression.  (+info)

Chronic beryllium disease and cancer risk estimates with uncertainty for beryllium released to the air from the Rocky Flats Plant. (5/202)

Beryllium was released into the air from routine operations and three accidental fires at the Rocky Flats Plant (RFP) in Colorado from 1958 to 1989. We evaluated environmental monitoring data and developed estimates of airborne concentrations and their uncertainties and calculated lifetime cancer risks and risks of chronic beryllium disease to hypothetical receptors. This article discusses exposure-response relationships for lung cancer and chronic beryllium disease. We assigned a distribution to cancer slope factor values based on the relative risk estimates from an occupational epidemiologic study used by the U.S. Environmental Protection Agency (EPA) to determine the slope factors. We used the regional atmospheric transport code for Hanford emission tracking atmospheric transport model for exposure calculations because it is particularly well suited for long-term annual-average dispersion estimates and it incorporates spatially varying meteorologic and environmental parameters. We accounted for model prediction uncertainty by using several multiplicative stochastic correction factors that accounted for uncertainty in the dispersion estimate, the meteorology, deposition, and plume depletion. We used Monte Carlo techniques to propagate model prediction uncertainty through to the final risk calculations. We developed nine exposure scenarios of hypothetical but typical residents of the RFP area to consider the lifestyle, time spent outdoors, location, age, and sex of people who may have been exposed. We determined geometric mean incremental lifetime cancer incidence risk estimates for beryllium inhalation for each scenario. The risk estimates were < 10(-6). Predicted air concentrations were well below the current reference concentration derived by the EPA for beryllium sensitization.  (+info)

Characterization of the hinges of the effector loop in the reaction pathway of the activation of ras-proteins. Kinetics of binding of beryllium trifluoride to V29G and I36G mutants of Ha-ras-p21. (6/202)

This work experimentally confirms the pathway of activation of Ha-ras-p21, which was calculated by the method of Targeted Molecular Dynamics (TMD) (Diaz JF, Wroblowski B, Schlitter J, Engelborghs Y, 1997a, Proteins Struct Funct Genet 28:434-451). The process can be studied experimentally by analyzing the binding of BeF3- to the GDP complex of the active fluorescent mutant Y32W (Diaz JF, Sillen A, Engelborghs Y, 1997b, J Biol Chem 227:23138-23143). Two mutants, V29G and 136G, have been constructed at both sides of the effector loop of the active fluorescent mutant. This was done to check the proposed reaction pathway and to provide further insight into the mechanism of the activation of ras proteins. Both mutations accelerate the conformational isomerization with two orders of magnitude, demonstrating convincingly the role of these residues as hinges of the effector loop in one or more of the transitions of the conformational change. These results provide experimental support to the pathway calculated by TMD analysis.  (+info)

Aluminum fluoride inhibition of cabbage phospholipase D by a phosphate-mimicking mechanism. (7/202)

Aluminum fluoride (AlF(4)(-)) inhibited phospholipase D (PLD) purified from cabbage in both PIP(2)-dependent and PIP(2)-independent assays, consistent with its previously observed effect on mammalian PLD. The possibility that AlF(4)(-) may exert this effect through its known phosphate-mimicking property was examined. Inorganic phosphate, as well as two phosphate analogs, beryllium fluoride and orthovanadate, also inhibited cabbage PLD. Enzyme kinetic studies confirmed that PLD followed Hill kinetics, characteristic for allosteric enzymes, with an apparent Hill coefficient (n(app)) of 3.8, indicating positive cooperativity among multiple substrate-binding sites and suggesting possible functional oligomerization of the enzyme. AlF(4)(-) modification of PLD kinetics was consistent with a competitive mode of enzyme inhibition. It is therefore proposed that AlF(4)(-), and other phosphate analogs, inhibits plant PLD by competing with a substrate phosphate group for a substrate-binding site, thereby preventing the formation of an enzyme-phosphatidyl intermediate. This may be a conserved feature of PLD superfamily enzymes.  (+info)

Theoretical studies of metal-phosphate interactions: interaction of Li+, Na+, K+, Be++, Mg++, and Ca++ with H2PO4- and (CH3O)2PO2-: implications for nucleic acid solvation. (8/202)

Model phosphate-metal solvation complexes have been studied by ab-initio self-consistent-field techniques. The complexes studied include (RO)2PO2-(R = H or CH3) with Li+, Na+, K+, Be++, Mg++, Ca++, H2O, and Cl-. The geometries of the complexes were chosen to approximate reasonable model solvation complexes for phosphate groups in a nucleic acid environment. Calculated energies of formation vary as Be++ greater than Mg++ greater than Ca++ greater than Li+ greater than Na+ greater than K+ for all isostructural complexes, consistent with experimental binding trends. These results suggest that site binding of this type can successfully account for the relative specificities of ion binding in polynucleotides and other phosphate-containing molecules.  (+info)