Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications. (1/466)

Fructose 1,6-bisphosphate aldolase catalyzes the reversible cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceraldehyde 3-phosphate or glyceraldehyde, respectively. Catalysis involves the formation of a Schiff's base intermediate formed at the epsilon-amino group of Lys229. The existing apo-enzyme structure was refined using the crystallographic free-R-factor and maximum likelihood methods that have been shown to give improved structural results that are less subject to model bias. Crystals were also soaked with the natural substrate (fructose 1,6-bisphosphate), and the crystal structure of this complex has been determined to 2.8 A. The apo structure differs from the previous Brookhaven-deposited structure (1ald) in the flexible C-terminal region. This is also the region where the native and complex structures exhibit differences. The conformational changes between native and complex structure are not large, but the observed complex does not involve the full formation of the Schiff's base intermediate, and suggests a preliminary hydrogen-bonded Michaelis complex before the formation of the covalent complex.  (+info)

Serine transhydroxymethylase from rabbit liver. Sequence of anonapeptide at the pyridoxal-5'-phosphate-binding site. (2/466)

The amino acid sequence of the coenzyme-binding site of serine transhydroxymethylase from rabbit liver has been determined. After reduction with NaBH4 and aminoethylation, a first sample of enzyme was digested with thermolysin and a single phosphopyridoxyl peptide was isolated. A second sample of similarly treated enzyme was digested with chymotrypsin and three phosphopyridoxyl peptides clearly originating from a unique coenzyme-binding site were isolated. Sequence analysis of these peptides indicate the following structure: Val-Val-Thr-Thr-His(Pxy)-Thr-Leu. Sequence homologies of the active site of various pyridoxalphosphate enzymes are discussed in terms of a possible catalytic role and of evolution of this class of proteins.  (+info)

Radioactive labelling of ribosomal proteins with reductive alkylation and its use in studying ribosome-cytosol interactions. (3/466)

Mouse brain ribosomes were radioactively labelled by a cell-free reductive alkylation reaction with NaBH4 and [14C]formaldehyde. The radioactivity was largely associated with ribosomal proteins, but little, if any, of the rRNA was radioactive after the alkylation procedure. Both ribosomal structural proteins and loosely associated components were successfully labelled by this procedure. The sedimentation properties of the ribosomes were unaltered and their ability to carry out poly(U)-directed protein synthesis, although decreased, was largely retained. Incubation of 14C-labelled ribosomes with brain cytosol resulted in a 17% loss of radioactivity, although treatment of the ribosomes with 1.0 m-KCl to remove the loosely associated factors rendered the ribonucleoprotein particles resistant to cytosol effects. The ribosome-cytosol interactions did not appear to be related to an exchange process, since the released radioactivity was largely degraded to acid-soluble material. In addition, the incubation of native ribosomes with brain cytosol resulted in an almost complete loss in the ability of the ribosomes to participate in cell-free protein synthesis.  (+info)

The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. (4/466)

The catalytic residue of eukaryotic and prokaryotic sulfatases is a alpha-formylglycine. In the sulfatase of Klebsiella pneumoniae the formylglycine is generated by posttranslational oxidation of serine 72. We cloned the atsBA operon of K. pneumoniae and found that the sulfatase was expressed in inactive form in Escherichia coli transformed with the structural gene (atsA). Coexpression of the atsB gene, however, led to production of high sulfatase activity, indicating that the atsB gene product plays a posttranslational role that is essential for the sulfatase to gain its catalytic activity. This was verified after purification of the sulfatase from the periplasm of the cells. Peptide analysis of the protein expressed in the presence of AtsB revealed that half of the polypeptides carried the formylglycine at position 72, while the remaining polypeptides carried the encoded serine. The inactive sulfatase expressed in the absence of AtsB carried exclusively serine 72, demonstrating that the atsB gene is required for formylglycine modification. This gene encodes a 395-amino acid residue iron sulfur protein that has a cytosolic localization and is supposed to directly or indirectly catalyze the oxidation of the serine to formylglycine.  (+info)

Reaction centers of photosystem II with a chemically-modified pigment composition: exchange of pheophytins with 13(1)-deoxo-13(1)-hydroxy-pheophytin a. (5/466)

Isolated reaction centers of photosystem II with an altered pigment content were obtained by chemical exchange of the native pheophytin a molecules with externally added 13(1)-deoxo-13(1)-hydroxy-pheophytin a. Judged from a comparison of the absorption spectra and photochemical activities of exchanged and control reaction centers, 70-80% of the pheophytin molecules active in charge separation are replaced by 13(1)-deoxo-13(1)-hydroxy-pheophytin a after double application of the exchange procedure. The new molecule at the active branch was not active photochemically. This appears to be the first stable preparation in which a redox active chromophore of the reaction center of photosystem II was modified by chemical substitution. The data are compatible with the presence of an active and inactive branch of cofactors, as in bacterial reaction centers. Possible applications of the 13(1)-deoxo-13(1)-hydroxy-pheophytin a-exchanged preparation to the spectral and functional analysis of native reaction centers of photosystem II are discussed.  (+info)

Reactions of lipid-derived malondialdehyde with collagen. (6/466)

Malondialdehyde is a product of fatty acid oxidation (e.g. from low density lipoprotein) implicated in the damage of proteins such as collagen in the cardiovascular system (Chio, K. J., and Tappel, A. L. (1969) Biochemistry 8, 2821-2827). Its concentration is raised in diabetic subjects probably as a side effect of increased protein glycation. Collagen has enzyme-catalyzed cross-links formed between its individual molecules that are essential for maintaining the structure and flexibility of the collagen fiber. The cross-link dehydro-hydroxylysinonorleucine reacts irreversibly with 10 mM malondialdehyde at least 3 orders of magnitude faster than glucose reactions with lysine or arginine, such that there is little cross-link left after 1 h at 37 degrees C. Other cross-links and glycated elements of collagen are also vulnerable. Several possible products of malondialdehyde with collagen cross-links are proposed, and the potential involvement of collagenous histidine in these reactions is discussed. We have also isolated Ndelta-(2-pyrimidyl)-L-ornithine from collagenous arginine reacted with malondialdehyde. The yields of this product were considerably higher than those from model reactions, being approximately 2 molecules/collagen molecule after 1 day at 37 degrees C in 10 mM malondialdehyde. Collagenous lysine-derived malondialdehyde products may have been present but were not protected from protein acid hydrolysis by standard reduction techniques, thus resulting in a multitude of fragmented products.  (+info)

The immobilization of adenine nucleotides on polysaccharides by using glutaraldehyde coupling and borohydride reduction. (7/466)

Adenine nucleotides were immobilized on modified Sepharose 4B or Dextran T40 with glutaraldehyde and reduced with KBH4. Binding was dependent on pH and the nature of the amino group on the modified polysaccharide. ATP bound to soluble dextran retained coenzyme activity with glycerol kinase. Binding is proposed to occur via a Schiff base.  (+info)

Reovirus messenger RNA contains a methylated, blocked 5'-terminal structure: m-7G(5')ppp(5')G-MpCp-. (8/466)

Reovirus mRNA synthesized in vitro by the virus-associated RNA polymerase in the presence of S-adenosylmethionine contains blocked, methylated 5'-termini with the structure, m-7G(5')ppp(5')G-MpCp. The functional significance and possible mechanism of formation of this novel 5'-5' terminal nucleotide linkage are discussed.  (+info)