Effect of transforming growth factor beta on experimental Salmonella typhimurium infection in mice. (57/126162)

We have investigated the effect of the in vivo administration of recombinant transforming growth factor beta (rTGF-beta) on the pathogenic mechanisms involved in Salmonella typhimurium experimental infection in mice. The protective response elicited by macrophages was induced by rTGF-beta1 by 2 days after experimental infection, as demonstrated by an increased NO production, while the humoral protective effect began with cytokine mRNA expression 2 days after the challenge and continued after 5 days with cytokine release and lymphocyte activation. We demonstrated that all mice who received rTGF-beta1 survived 7 days after infection. The number of bacteria recovered in the spleens and in the livers of rTGF-beta1-treated mice 2 and 5 days after infection was significantly smaller than that found in the same organs after phosphate-buffered saline (PBS) inoculation. Furthermore, 2 and 5 days after infection, splenic macrophages from rTGF-beta1-treated mice showed a greater NO production than did those from PBS-treated mice. The effect of rTGF-beta1 on S. typhimurium infection in mice was correlated with the expression of cell costimulatory CD28 molecules. Five days after S. typhimurium infection, the percentage of CD28(+)-expressing T cells in splenic lymphocytes from rTGF-beta1-treated mice increased with respect to that from control mice. Gamma interferon (IFN-gamma) mRNA was present in a greater amount in spleen cells from rTGF-beta1-treated mice after 2 days, although the intensity of the band decreased 5 days after the challenge. A similar pattern was obtained with the mRNAs for interleukin-1alpha (IL-1alpha), IL-6, TGF-beta, and inducible nitric oxide synthase, which showed greater expression in cells obtained from rTGF-beta1-treated and S. typhimurium-infected mice 2 days after challenge. The treatment with rTGF-beta1 induced an increase in IL-1alpha and IFN-gamma release in the supernatant of splenocyte cultures 5 days after the experimental infection with S. typhimurium. Moreover, we demonstrated that 5 days after infection, the IFN-gamma titer was significantly greater in the sera of rTGF-beta-treated mice than in those of PBS-treated mice. Also, hsp60 showed greater expression 2 days after the challenge in splenocytes from rTGF-beta1-treated mice. The role played by proinflammatory and immunoregulatory cytokines and by CD28 is discussed.  (+info)

Chlamydia pneumoniae infection in human monocytes. (58/126162)

Chlamydia pneumoniae infection has been associated with cardiovascular diseases in seroepidemiological studies and by demonstration of the pathogen in atherosclerotic lesions. It has the capacity to infect several cell types, including monocyte-derived macrophages, which play an essential role in the development of atherosclerosis. However, the persistence of C. pneumoniae in mononuclear cells is poorly understood. To study the morphology and biological characteristics of the infection, human peripheral blood monocytes were infected with C. pneumoniae. Freshly isolated monocytes resisted the development of infectious progeny, and confocal and transmission electron microscopy showed that the morphology of the inclusions and chlamydial particles was abnormal. Addition of tryptophan or antibodies against gamma interferon did not diminish the inhibition of C. pneumoniae, suggesting that other factors are involved in the chlamydiostatic activity of the monocytes. Chlamydial mRNA was expressed at least 3 days after infection, however, and a capability for infected monocytes to induce a positive lymphocyte proliferative response was detected for up to 7 days, indicating that C. pneumoniae remains metabolically active in the monocytes in vitro. These results are in accordance with the hypothesis that C. pneumoniae may participate in the maintenance of local immunological response and inflammation via infected monocytes and thus enhance atherosclerosis.  (+info)

In vitro induction of activation-induced cell death in lymphocytes from chronic periodontal lesions by exogenous Fas ligand. (59/126162)

Periodontitis is a chronic inflammatory disease which gradually destroys the supporting tissues of the teeth, leading to tooth loss in adults. The lesions are characterized by a persistence of inflammatory cells in gingival and periodontal connective tissues. To understand what mechanisms are involved in the establishment of chronic lesions, we hypothesized that infiltrating lymphocytes might be resistant to apoptosis. However, both Bcl-2 and Bcl-xL were weakly detected in lymphocytes from the lesions, compared with those from peripheral blood, suggesting that these cells are susceptible to apoptosis. Nevertheless, very few apoptotic cells were observed in tissue sections from the lesions. Lymphocytes from the lesions expressed mRNA encoding Fas, whereas Fas-ligand mRNA was very weakly expressed in lymphocytes from the lesions and in periodontal tissues. Since the results indicated that lymphocytes in the lesions might be susceptible to Fas-mediated apoptosis but lack the death signal, we next investigated if these lymphocytes actually undergo apoptosis by the addition of anti-Fas antibodies in vitro. Fas-positive lymphocytes from the lesions underwent apoptosis by these antibodies, but Fas-negative lymphocytes and Fas-positive peripheral lymphocytes did not undergo apoptosis by these antibodies. These results indicate that lymphocytes in the lesions are susceptible to activation-induced cell death and are induced to die by apoptosis after the addition of exogenous Fas ligand.  (+info)

Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis. (60/126162)

Previous findings indicate that the cystic fibrosis transmembrane conductance regulator (CFTR) is a ligand for Pseudomonas aeruginosa ingestion into respiratory epithelial cells. In experimental murine keratitis, P. aeruginosa enters corneal epithelial cells. We determined the importance of CFTR-mediated uptake of P. aeruginosa by corneal cells in experimental eye infections. Entry of noncytotoxic (exoU) P. aeruginosa into human and rabbit corneal cell cultures was inhibited with monoclonal antibodies and peptides specific to CFTR amino acids 108 to 117. Immunofluorescence microscopy and flow cytometry demonstrated CFTR in the intact murine corneal epithelium, and electron microscopy showed that CFTR binds to P. aeruginosa following corneal cell ingestion. In experimental murine eye infections, multiple additions of 5 nM CFTR peptide 103-117 to inocula of either cytotoxic (exoU+) or noncytotoxic P. aeruginosa resulted in large reductions in bacteria in the eye and markedly lessened eye pathology. Compared with wild-type C57BL/6 mice, heterozygous DeltaF508 Cftr mice infected with P. aeruginosa had an approximately 10-fold reduction in bacterial levels in the eye and consequent reductions in eye pathology. Homozygous DeltaF508 Cftr mice were nearly completely resistant to P. aeruginosa corneal infection. CFTR-mediated internalization of P. aeruginosa by buried corneal epithelial cells is critical to the pathogenesis of experimental eye infection, while in the lung, P. aeruginosa uptake by surface epithelial cells enhances P. aeruginosa clearance from this tissue.  (+info)

Alternative splicing of transcripts encoding the alpha- and beta-subunits of mouse glucosidase II in T lymphocytes. (61/126162)

Glucosidase II is a processing enzyme of the endoplasmic reticulum that functions to hydrolyze two glucose residues in immature N -linked oligosaccharides attached to newly synthesized polypeptides. We previously reported the cDNA cloning of the alpha- and beta-subunits of mouse glucosidase II from T cells following copurification of these proteins with the highly glycosylated transmembrane protein-tyrosine phosphatase CD45. Subsequent examination of additional cDNA clones, coupled with partial genomic DNA sequencing, has revealed that both subunits are encoded by gene products that undergo alternative splicing in T lymphocytes. The catalytic alpha-subunit possesses two variably expressed segments, box Alpha1, consisting of 22 amino acids located proximal to the amino-terminus, and box Alpha2, composed of 9 amino acids situated between the amino-terminus and the putative catalytic site in the central region of the molecule. Box Beta1, a variably expressed 7 amino acid segment in the beta-subunit of glucosidase II, is located immediately downstream of an acidic stretch near the carboxyl-terminus. Screening of reverse transcribed RNA by polymerase chain reaction confirms the variable inclusion of each of these segments in transcripts obtained from a panel of T-lymphocyte cell lines. Thus, distinct isoforms of glucosidase II exist that may perform specialized functions.  (+info)

Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: alpha1,3-d-mannoside beta1, 4-N-acetylglucosaminyltransferase. (62/126162)

A human cDNA for UDP- N -acetylglucosamine:alpha1,3-d-mannoside beta1,4- N- acetylglucosaminyltransferase (GnT-IV) was isolated from a liver cDNA library using a probe based on a partial cDNA sequence of the bovine GnT-IV. The cDNA encoded a complete sequence of a type II membrane protein of 535 amino acids which is 96% identical to the bovine GnT-IV. Transient expression of the human cDNA in COS7 cells increased total cellular GnT-IV activity 25-fold, demonstrating that this cDNA encodes a functional human GnT-IV. Northern blot analysis of normal tissues indicated that at least five different sizes of mRNA (9.7, 7.6, 5.1, 3.8, and 2.4 kb) forGnT-IV are expressed in vivo. Furthermore, these mRNAs are expressed at different levels between tissues. Large amounts of mRNA were detected in tissues harboring T lineage cells. Also, the promyelocytic leukemia cell line HL-60 and the lymphoblastic leukemia cell line MOLT-4 revealed abundant mRNA. Lastly, the gene was mapped at the locus on human chromosome 2, band q12 by fluorescent in situ hybridization.  (+info)

Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. (63/126162)

Angiotensin type 2 receptor gene null mutant mice display congenital anomalies of the kidney and urinary tract (CAKUT). Various features of mouse CAKUT impressively mimic human CAKUT. Studies of the human type 2 receptor (AGTR2) gene in two independent cohorts found that a significant association exists between CAKUT and a nucleotide transition within the lariat branchpoint motif of intron 1, which perturbs AGTR2 mRNA splicing efficiency. AGTR2, therefore, has a significant ontogenic role for the kidney and urinary tract system. Studies revealed that the establishment of CAKUT is preceded by delayed apoptosis of undifferentiated mesenchymal cells surrounding the urinary tract during key ontogenic events, from the ureteral budding to the expansive growth of the kidney and ureter.  (+info)

Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. (64/126162)

Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defective lysosome-related organelles. Here, we report the identification of two HPS patients with mutations in the beta 3A subunit of the heterotetrameric AP-3 complex. The patients' fibroblasts exhibit drastically reduced levels of AP-3 due to enhanced degradation of mutant beta 3A. The AP-3 deficiency results in increased surface expression of the lysosomal membrane proteins CD63, lamp-1, and lamp-2, but not of nonlysosomal proteins. These differential effects are consistent with the preferential interaction of the AP-3 mu 3A subunit with tyrosine-based signals involved in lysosomal targeting. Our results suggest that AP-3 functions in protein sorting to lysosomes and provide an example of a human disease in which altered trafficking of integral membrane proteins is due to mutations in a component of the sorting machinery.  (+info)