Revisiting the role of H+ in chemotactic signaling of sperm. (1/6)

Chemotaxis of sperm is an important step toward fertilization. During chemotaxis, sperm change their swimming behavior in a gradient of the chemoattractant that is released by the eggs, and finally sperm accumulate near the eggs. A well established model to study chemotaxis is the sea urchin Arbacia punctulata. Resact, the chemoattractant of Arbacia, is a peptide that binds to a receptor guanylyl cyclase. The signaling pathway underlying chemotaxis is still poorly understood. Stimulation of sperm with resact induces a variety of cellular events, including a rise in intracellular pH (pHi) and an influx of Ca2+; the Ca2+ entry is essential for the chemotactic behavior. Previous studies proposed that the influx of Ca2+ is initiated by the rise in pHi. According to this proposal, a cGMP-induced hyperpolarization activates a voltage-dependent Na+/H+ exchanger that expels H+ from the cell. Because some aspects of the proposed signaling pathway are inconsistent with recent results (Kaupp, U.B., J. Solzin, J.E. Brown, A. Helbig, V. Hagen, M. Beyermann, E. Hildebrand, and I. Weyand. 2003. Nat. Cell Biol. 5:109-117), we reexamined the role of protons in chemotaxis of sperm using kinetic measurements of the changes in pHi and intracellular Ca2+ concentration. We show that for physiological concentrations of resact (<25 pM), the influx of Ca2+ precedes the rise in pHi. Moreover, buffering of pHi completely abolishes the resact-induced pHi signal, but leaves the Ca2+ signal and the chemotactic motor response unaffected. We conclude that an elevation of pHi is required neither to open Ca(2+)-permeable channels nor to control the chemotactic behavior. Intracellular release of cGMP from a caged compound does not cause an increase in pHi, indicating that the rise in pHi is induced by cellular events unrelated to cGMP itself, but probably triggered by the consumption and subsequent replenishment of GTP. These results show that the resact-induced rise in pHi is not an obligatory step in sperm chemotactic signaling. A rise in pHi is also not required for peptide-induced Ca2+ entry into sperm of the sea urchin Strongylocentrotus purpuratus. Speract, a peptide of S. purpuratus may act as a chemoattractant as well or may serve functions other than chemotaxis.  (+info)

Ca2+ spikes in the flagellum control chemotactic behavior of sperm. (2/6)

The events that occur during chemotaxis of sperm are only partly known. As an essential step toward determining the underlying mechanism, we have recorded Ca2+ dynamics in swimming sperm of marine invertebrates. Stimulation of the sea urchin Arbacia punctulata by the chemoattractant or by intracellular cGMP evokes Ca2+ spikes in the flagellum. A Ca2+ spike elicits a turn in the trajectory followed by a period of straight swimming ('turn-and-run'). The train of Ca2+ spikes gives rise to repetitive loop-like movements. When sperm swim in a concentration gradient of the attractant, the Ca2+ spikes and the stimulus function are synchronized, suggesting that precise timing of Ca2+ spikes controls navigation. We identified the peptide asterosap as a chemotactic factor of the starfish Asterias amurensis. The Ca2+ spikes and swimming behavior of sperm from starfish and sea urchin are similar, implying that the signaling pathway of chemotaxis has been conserved for almost 500 million years.  (+info)

Assessment of sperm chemokinesis with exposure to jelly coats of sea urchin eggs and resact: a microfluidic experiment and numerical study. (3/6)

Specific peptides contained within the extracellular layer, or jelly coat, of a sea urchin egg have been hypothesized to play an important role in fertilization, though separate accounting of the effects of chemoattraction, chemokinesis, sperm agglomeration and the other possible roles of the jelly coat have not been reported. In the present study, we used a microfluidic device that allowed determination of the differences in the diffusion coefficients of sperm of the purple sea urchin Arbacia punctulata subjected to two chemoattractants, namely the jelly coat and resact. Our objectives were twofold: (1) to experimentally determine and compare the diffusion coefficients of Arbacia punctulata spermatozoa in seawater, jelly coat solution and resact solution; and (2) to determine the effect of sea urchin sperm diffusion coefficient and egg size on the sperm-egg collision frequency using stochastic simulations. Numerical values of the diffusion coefficients obtained by diffusing the spermatozoa in seawater, resact solution and jelly coat solution were used to quantify the chemotactic effect. This allowed direct incorporation of known enlargements of the egg, and altered sperm diffusion coefficients in the presence of chemoattractant, in the stochastic simulations. Simulation results showed that increase in diffusion coefficient values and egg diameter values increased the collision frequency. From the simulation results, we concluded that type of sperm, egg diameter and diffusion coefficient are significant factors in egg fertilization. Increasing the motility of sperm appears to be the prominent role of the jelly coat.  (+info)

Multiple processes regulate long-term population dynamics of sea urchins on Mediterranean rocky reefs. (4/6)

 (+info)

Natural or naturalized? Phylogeography suggests that the abundant sea urchin Arbacia lixula is a recent colonizer of the Mediterranean. (5/6)

 (+info)

Direct relationship between osmotic and ionic conforming behavior and tissue water regulatory capacity in echinoids. (6/6)

 (+info)