S-16924 [(R)-2-[1-[2-(2,3-dihydro-benzo[1,4]dioxin-5-yloxy)-ethyl]- pyrrolidin-3yl]-1-(4-fluorophenyl)-ethanone], a novel, potential antipsychotic with marked serotonin1A agonist properties: III. Anxiolytic actions in comparison with clozapine and haloperidol. (1/3332)

S-16924 is a potential antipsychotic that displays agonist and antagonist properties at serotonin (5-HT)1A and 5-HT2A/2C receptors, respectively. In a pigeon conflict procedure, the benzodiazepine clorazepate (CLZ) increased punished responses, an action mimicked by S-16924, whereas the atypical antipsychotic clozapine and the neuroleptic haloperidol were inactive. Similarly, in a Vogel conflict paradigm in rats, CLZ increased punished responses, an action shared by S-16924 but not by clozapine or haloperidol. This action of S-16924 was abolished by the 5-HT1A antagonist WAY-100,635. Ultrasonic vocalizations in rats were inhibited by CLZ, S-16924, clozapine, and haloperidol. However, although WAY-100,635 abolished the action of S-16924, it did not affect clozapine and haloperidol. In a rat elevated plus-maze, CLZ, but not S-16924, clozapine, and haloperidol, increased open-arm entries. Like CLZ, S-16924 increased social interaction in rats, whereas clozapine and haloperidol were inactive. WAY-100,635 abolished this action of S-16924. CLZ, S-16924, clozapine, and haloperidol decreased aggressive interactions in isolated mice, but this effect of S-16924 was not blocked by WAY-100, 635. All drugs inhibited motor behavior, but the separation to anxiolytic doses was more pronounced for S-16924 than for CLZ. Finally, in freely moving rats, CLZ and S-16924, but not clozapine and haloperidol, decreased dialysis levels of 5-HT in the nucleus accumbens: this action of S-16924 was blocked by WAY-100,165. In conclusion, in contrast to haloperidol and clozapine, S-16924 possessed a broad-based profile of anxiolytic activity at doses lower than those provoking motor disruption. Its principal mechanism of action was activation of 5-HT1A (auto)receptors.  (+info)

Behavioral, toxic, and neurochemical effects of sydnocarb, a novel psychomotor stimulant: comparisons with methamphetamine. (2/3332)

Sydnocarb (3-(beta-phenylisopropyl)-N-phenylcarbamoylsydnonimine) is a psychostimulant in clinical practice in Russia as a primary and adjunct therapy for a host of psychiatric disorders, including schizophrenia and depression. It has been described as a stimulant with an addiction liability and toxicity less than that of amphetamines. The present study undertook to evaluate the psychomotor stimulant effects of sydnocarb in comparison to those of methamphetamine. Sydnocarb increased locomotor activity of mice with reduced potency (approximately 10-fold) and efficacy compared with methamphetamine. Sydnocarb blocked the locomotor depressant effects of haloperidol at doses that were inactive when given alone. The locomotor stimulant effects of both methamphetamine and sydnocarb were dose-dependently blocked by the dopamine D1 and D2 antagonists SCH 39166 and spiperone, respectively; blockade generally occurred at doses of the antagonists that did not depress locomotor activity when given alone. In mice trained to discriminate methamphetamine from saline, sydnocarb fully substituted for methamphetamine with a 9-fold lower potency. When substituted for methamphetamine under self-administration experiments in rats, 10-fold higher concentrations of sydnocarb maintained responding by its i.v. presentation. Sydnocarb engendered stereotypy in high doses with approximately a 2-fold lower potency than methamphetamine. However, sydnocarb was much less efficacious than methamphetamine in inducing stereotyped behavior. Both sydnocarb and methamphetamine increased dialysate levels of dopamine in mouse striatum; however, the potency and efficacy of sydnocarb was less than methamphetamine. The convulsive effects of cocaine were significantly enhanced by the coadministration of nontoxic doses of methamphetamine but not of sydnocarb. Taken together, the present findings indicate that sydnocarb has psychomotor stimulant effects that are shared by methamphetamine while demonstrating a reduced behavioral toxicity.  (+info)

Improvement by nefiracetam of beta-amyloid-(1-42)-induced learning and memory impairments in rats. (3/3332)

1. We have previously demonstrated that continuous i.c.v. infusion of amyloid beta-peptide (A beta), the major constituent of senile plaques in the brains of patients with Alzheimer's disease, results in learning and memory deficits in rats. 2. In the present study, we investigated the effects of nefiracetam [N-(2,6-dimethylphenyl)-2-(2-oxo-1-pyrrolidinyl) acetamide, DM-9384] on A beta-(1-42)-induced learning and memory deficits in rats. 3. In the A beta-(1-42)-infused rats, spontaneous alternation behaviour in a Y-maze task, spatial reference and working memory in a water maze task, and retention of passive avoidance learning were significantly impaired as compared with A beta-(40-1)-infused control rats. 4. Nefiracetam, at a dose range of 1-10 mg kg(-1), improved learning and memory deficits in the A beta-(1-42)-infused rats when it was administered p.o. 1 h before the behavioural tests. 5. Nefiracetam at a dose of 3 mg kg(-1) p.o. increased the activity of choline acetyltransferase in the hippocampus of A beta-(1-42)-infused rats. 6. Nefiracetam increased dopamine turnover in the cerebral cortex and striatum of A beta-(1-42)-infused rats, but failed to affect the noradrenaline, serotonin and 5-hydroxyindoleacetic acid content. 7. These results suggest that nefiracetam may be useful for the treatment of patients with Alzheimer's disease.  (+info)

Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. (4/3332)

We have examined neuroanatomical, biochemical and endocrine parameters and spatial learning in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor (nAChR) during ageing. Aged beta2(-/-) mutant mice showed region-specific alterations in cortical regions, including neocortical hypotrophy, loss of hippocampal pyramidal neurons, astro- and microgliosis and elevation of serum corticosterone levels. Whereas adult mutant and control animals performed well in the Morris maze, 22- to 24-month-old beta2(-/-) mice were significantly impaired in spatial learning. These data show that beta2 subunit-containing nAChRs can contribute to both neuronal survival and maintenance of cognitive performance during ageing. beta2(-/-) mice may thus serve as one possible animal model for some of the cognitive deficits and degenerative processes which take place during physiological ageing and in Alzheimer's disease, particularly those associated with dysfunction of the cholinergic system.  (+info)

Parallel information processing in the dorsal striatum: relation to hippocampal function. (5/3332)

We investigated the effects of localized medial and lateral CPu lesions and fornix/fimbria lesions on responses to a local cue and to behavior based on cognitive-spatial information in the water maze. Rats were trained concurrently on the cue (visible platform) and spatial (submerged platform) components of the task, followed by a test in which responses to the two types of information were dissociated by a measure of competing response tendencies. Bilateral lesions of lateral CPu did not affect acquisition of either cue or spatial responding but produced a preference for the spatial response on the competition test. Bilateral lesions of the medial CPu retarded but did not prevent learning both components and produced a preference for the cue response on the competition test. The latter effect was accompanied by increased thigmotaxis (swimming in the periphery of the pool), primarily during the early acquisition trials, which was attributed to an impaired ability to respond to learned spatial information. Fornix/fimbria lesions prevented spatial but not cue learning and produced a preference for the cue response on the competition test. Asymmetric lesions (unilateral hippocampus and contralateral medial CPu) produced mild retardation of acquisition of both the cue and spatial tasks and a preference for the cue response on the competition test. These findings dissociate the functions of the lateral and medial CPu and suggest that the hippocampus and medial CPu may be parts of a system that promotes responding based on learned cognitive-spatial information, particularly in competitive cue-place response situations.  (+info)

A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. (6/3332)

Behavioral, biophysical, and pharmacological studies have implicated the hippocampus in the formation and storage of spatial memory. However, the molecular mechanisms underlying long-term spatial memory are poorly understood. In this study, we show that mitogen-activated protein kinase (MAPK, also called ERK) is activated in the dorsal, but not the ventral, hippocampus of rats after training in a spatial memory task, the Morris water maze. The activation was expressed as enhanced phosphorylation of MAPK in the pyramidal neurons of the CA1/CA2 subfield. In contrast, no increase in the percentage of phospho-MAPK-positive cells was detected in either the CA3 subfield or the dentate gyrus. The enhanced phosphorylation was observed only after multiple training trials but not after a single trial or after multiple trials in which the location of the target platform was randomly changed between each trial. Inhibition of the MAPK/ERK cascade in dorsal hippocampi did not impair acquisition, but blocked the formation of long-term spatial memory. In contrast, intrahippocampal infusion of SB203580, a specific inhibitor of the stress-activated MAPK (p38 MAPK), did not interfere with memory storage. These results demonstrate a MAPK-mediated cellular event in the CA1/CA2 subfields of the dorsal hippocampus that is critical for long-term spatial memory.  (+info)

Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning. (7/3332)

The development of navigational strategies to solve spatial problems appears to be dependent on an intact hippocampal formation. The circular water maze task requires the animal to use extramaze spatial cues to locate a pedestal positioned just below the surface of the water. Presently, we investigated the role of a recently discovered brain angiotensin receptor subtype (AT4) in the acquisition of this spatial learning task. The AT4 receptor subtype is activated by angiotensin IV (AngIV) rather than angiotensins II or III, as documented for the AT1 and AT2 receptor subtypes, and is heavily distributed in the CA1-CA3 fields of the hippocampus. Chronic intracerebroventricular infusion of a newly synthesized AT4 agonist (Norleucine1-AngIV) via osmotic pump facilitated the rate of acquisition to solve this task, whereas treatment with an AT4 receptor antagonist (Divalinal) significantly interfered with the acquisition of successful search strategies. Animals prepared with bilateral knife cuts of the perforant path, a major afferent hippocampal fiber bundle originating in the entorhinal cortex, displayed deficits in solving this task. This performance deficit could be reversed with acute intracerebroventricular infusion of a second AT4 receptor agonist (Norleucinal). These results suggest that the brain AngIV-AT4 system plays a role in the formation of spatial search strategies and memories. Further, application of an AT4 receptor agonist compensated for spatial memory deficits in performance accompanying perforant path knife cuts. Possible mechanisms underlying this compensatory effect are discussed.  (+info)

Complex behavioral strategy and reversal learning in the water maze without NMDA receptor-dependent long-term potentiation. (8/3332)

Successful performance of the water maze task requires that rats learn complex behavioral strategies for swimming in a pool of water, searching for and interacting with a hidden platform before its spatial location can be learned. To evaluate whether NMDA receptor-dependent long-term potentiation (NMDA-LTP) is required for learning the required behavioral strategies, rats with NMDA-LTP blocked by systemic pharmacological treatment were trained in the behavioral strategies using simplified and stepwise training methods. Despite the blockade of NMDA-LTP in the dentate gyrus and hippocampal area CA1, rats learned the required behavioral strategies and used them to learn both initial and reversed platform locations. This is the first evaluation of the role of NMDA-LTP specifically in behavioral strategy learning. Although hippocampal NMDA-LTP might contribute to the water maze task, this form of LTP is not essential for learning complex behavioral strategies or multiple hidden platform locations.  (+info)