Unusual location of a mitochondrial gene. Subunit III of cytochrome C oxidase is encoded in the nucleus of Chlamydomonad algae. (65/1498)

The algae of the family Chlamydomonadaceae lack the gene cox3 that encodes subunit III of cytochrome c oxidase in their mitochondrial genomes. This observation has raised the question of whether this subunit is present in cytochrome c oxidase or whether the corresponding gene is located in the nucleus. Cytochrome c oxidase was isolated from the colorless chlamydomonad Polytomella spp., and the existence of subunit III was established by immunoblotting analysis with an antibody directed against Saccharomyces cerevisiae subunit III. Based partly upon the N-terminal sequence of this subunit, oligodeoxynucleotides were designed and used for polymerase chain reaction amplification, and the resulting product was used to screen a cDNA library of Chlamydomonas reinhardtii. The complete sequences of the cox3 cDNAs from Polytomella spp. and C. reinhardtii are reported. Evidence is provided that the genes for cox3 are encoded by nuclear DNA, and the predicted polypeptides exhibit diminished physical constraints for import as compared with mitochondrial-DNA encoded homologs. This indicates that transfer of this gene to the nucleus occurred before Polytomella diverged from the photosynthetic Chlamydomonas lineage and that this transfer may have occurred in all chlamydomonad algae.  (+info)

Randomized controlled trial of nettle sting for treatment of base-of-thumb pain. (66/1498)

There are numerous published references to use of nettle sting for arthritis pain but no randomized controlled trials have been reported. We conducted a randomized controlled double-blind crossover study in 27 patients with osteoarthritic pain at the base of the thumb or index finger. Patients applied stinging nettle leaf (Urtica dioica) daily for one week to the painful area. The effect of this treatment was compared with that of placebo, white deadnettle leaf (Lamium album), for one week after a five-week washout period. Observations of pain and disability were recorded for the twelve weeks of the study. After one week's treatment with nettle sting, score reductions on both visual analogue scale (pain) and health assessment questionnaire (disability) were significantly greater than with placebo (P = 0.026 and P = 0.0027).  (+info)

Inflammation and Native American medicine: the role of botanicals. (67/1498)

There is a growing interest in medicinal botanicals as part of complementary medicine in the United States. In particular, both physicians and consumers are becoming aware of the use of herbals by Native American societies; many botanicals sold today as dietary supplements in the United States were used by Native Americans for similar purposes. Yet, these supplements represent only a small number of the >2500 different plant species from vascular taxa, and >2800 species from all taxa, known to have been prized for their medicinal properties by the indigenous inhabitants of the North American continent. We review some of the studies of the immunomodulatory activities of botanicals used by native peoples of North America, the bioactive constituents responsible for those activities, and the mechanisms by which these constituents might modulate the immune system. We focus particularly on 3 species of purple coneflower (ECHINACEA:) because of the widespread use of purple coneflower in the United States to boost immunity and prevent upper respiratory infections. Seven of the 10 most common botanicals sold in the United States were used extensively by Native Americans. However, there are very few data to support such use and even less information about drug toxicity or interactions.  (+info)

Cloning and characterization of a monocot mannose-binding lectin from Crocus vernus (family Iridaceae). (68/1498)

The molecular structure and carbohydrate-binding activity of the lectin from bulbs of spring crocus (Crocus vernus) has been determined unambiguously using a combination of protein analysis and cDNA cloning. Molecular cloning revealed that the lectin called C. vernus agglutinin (CVA) is encoded by a precursor consisting of two tandemly arrayed lectin domains with a reasonable sequence similarity to the monocot mannose-binding lectins. Post-translational cleavage of the precursor yields two equally sized polypeptides. Mature CVA consists of two pairs of polypeptides and hence is a heterotetrameric protein. Surface plasmon resonance studies of the interaction of the crocus lectin with high mannose-type glycans showed that the lectin interacts specifically with exposed alpha-1,3-dimannosyl motifs. Molecular modelling studies confirmed further the close relationships in overall fold and three-dimensional structure of the mannose-binding sites of the crocus lectin and other monocot mannose-binding lectins. However, docking experiments indicate that only one of the six putative mannose-binding sites of the CVA protomer is active. These results can explain the weak carbohydrate-binding activity and low specific agglutination activity of the lectin. As the cloning and characterization of the spring crocus lectin demonstrate that the monocot mannose-binding lectins occur also within the family Iridaceae a refined model of the molecular evolution of this lectin family is proposed.  (+info)

The role of fructan in flowering of Campanula rapunculoides. (69/1498)

Inulin type fructan was detected in all vegetative organs of Campanula rapunculoides L. plants. All flower parts contained fructan at some developmental stage. A steady decrease was found in sepals during development. Petals, however, stored fructan in the bud stage. A rapid breakdown during opening of the flower resulted in high concentrations of glucose and especially fructose that may contribute to the osmotic driving force involved in petal expansion. Before complete shrivelling, the hexoses were apparently exported from flower parts. Fructans were hydrolysed and exported from the stamen and style tissue upon flower opening. Similarly, the major fructan reserves in the ovary were broken down almost simultaneously with those in other flower parts. Hexoses did not reach high levels in the ovary, probably because they were rapidly metabolized and/or incorporated by developing seeds.  (+info)

Developmental changes and water status in tulip bulbs during storage: visualization by NMR imaging. (70/1498)

Magnetic Resonance Imaging (MRI) and light and scanning electron microscopy (SEM) were used to follow time-dependent morphological changes and changes in water status of tulip bulbs (Tulipa gesneriana L., cv. 'Apeldoorn') during bulb storage for 12 weeks at 20 degrees C (non-chilled) or 4 degrees C (chilled) and after planting. MR images reflecting the water content, the relaxation times T1 and T2 (or their reciprocal values, the relaxation rates R1 and R2), and the apparent self-diffusion coefficient of water molecules (ADC), were obtained for intact bulbs. After planting, scape elongation and flowering occurred only in chilled bulbs, while elongation in non-chilled bulbs was retarded. Microscopic observations showed different structural components and high heterogeneity of the bulb tissues. MRI revealed the elongation of the flower bud during storage, which was significantly faster in the chilled bulbs. In addition, MRI demonstrated a redistribution of water between different bulb organs, as well as significant differences in the pattern of this redistribution between the chilled and non-chilled bulbs. Generally, R2 relaxation rates became faster in all bulb organs during storage. At the same time, ADC values remained constant in the chilled bulbs, while exhibiting a significant increase in the non-chilled bulbs.  (+info)

Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. (71/1498)

The effects of drought on the photosynthetic characteristics of three Mediterranean plants (olive, Olea europea L.; rosemary, Rosmarinus officinalis L.; lavender, Lavandula stoechas L.) exposed to elevated UV-B irradiation in a glasshouse were investigated over a period of weeks. Drought conditions were imposed on 2-year-old plants by withholding water. During the onset of water stress, analyses of the response of net carbon assimilation of leaves to their intercellular CO2 concentration were used to examine the potential limitations imposed by stomata, carboxylation velocity and capacity for regeneration of ribulose 1,5-bisphosphate on photosynthesis. Measurements of chlorophyll fluorescence were used to determine changes in the efficiency of light utilization for electron transport, the occurrence of photoinhibition of photosystem II photochemistry and the possibility of stomatal patchiness across leaves. The first stages of water stress produced decreases in the light-saturated rate of CO2 assimilation which were accompanied by decreases in the maximum carboxylation velocity and the capacity for regeneration of ribulose 1,5-bisphosphate in the absence of any significant photodamage to photosystem II. Leaves of rosemary and lavender were more sensitive than those of olive during the first stages of the drought treatment and also exhibited increases in stomatal limitation. With increasing water stress, significant decreases in the maximum quantum efficiency of photosystem II photochemistry occurred in lavender and rosemary, and stomatal limitation was increased in olive. No indication of any heterogeneity of photosynthesis was found in any leaves. Drought treatment significantly decreased leaf area in all species, an important factor in drought-induced decreases in photosynthetic productivity. Exposure of plants to elevated UV-B radiation (0.47 W m(-2)) prior to and during the drought treatment had no significant effects on the growth or photosynthetic activities of the plants. Consequently, it is predicted that increasing UV-B due to future stratospheric ozone depletion is unlikely to have any significant impact on the photosynthetic productivity of olive, lavender and rosemary in the field.  (+info)

Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. (72/1498)

The possible involvement of Ca(2+)-mediated signaling in the induction/regulation of somatic embryogenesis from pro-embryogenic cells of sandalwood (Santalum album) has been investigated. (45)Ca(2+)-uptake studies and fura-2 fluorescence ratio photometry were used to measure changes in [Ca(2+)](cyt) of pro-embryogenic cells in response to culture conditions conducive for embryo development. Sandalwood pro-embryogenic cell masses (PEMs) are obtained in the callus proliferation medium that contains the auxin 2,4-dichlorophenoxyacetic acid. Subculture of PEMs into the embryo differentiation medium, which lacks 2,4-dichlorophenoxyacetic acid and has higher osmoticum, results in a 4-fold higher (45)Ca(2+) incorporation into the symplast. Fura-2 ratiometric analysis corroboratively shows a 10- to 16-fold increase in the [Ca(2+)](cyt) of PEMs, increasing from a resting concentration of 30 to 50 nM to 650 to 800 nM. Chelation of exogenous Ca(2+) with ethyleneglycol-bis(aminoethyl ether)-N,N'-tetraacetic acid arrests such an elevation in [Ca(2+)](cyt). Exogenous Ca(2+) when chelated or deprived also arrests embryo development and inhibits the accumulation of a sandalwood Ca(2+)-dependent protein kinase. However, such culture conditions do not cause cell death as the PEMs continue to proliferate to form larger cell clumps. Culture treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide reduced embryogenic frequency by 85%, indicating that blockage of Ca(2+)-mediated signaling pathway(s) involving sandalwood Ca(2+)-dependent protein kinase and/or calmodulin causes the inhibition of embryogenesis. The observations presented are evidence to suggest a second messenger role for exogenous Ca(2+) during sandalwood somatic embryogenesis.  (+info)