Multigene analyses identify the three earliest lineages of extant flowering plants. (33/1498)

Flowering plants (angiosperms) are by far the largest, most diverse, and most important group of land plants, with over 250,000 species and a dominating presence in most terrestrial ecosystems. Understanding the origin and early diversification of angiosperms has posed a long-standing botanical challenge [1]. Numerous morphological and molecular systematic studies have attempted to reconstruct the early history of this group, including identifying the root of the angiosperm tree. There is considerable disagreement among these studies, with various groups of putatively basal angiosperms from the subclass Magnoliidae having been placed at the root of the angiosperm tree (reviewed in [2-4]). We investigated the early evolution of angiosperms by conducting combined phylogenetic analyses of five genes that represent all three plant genomes from a broad sampling of angiosperms. Amborella, a monotypic, vessel-less dioecious shrub from New Caledonia, was clearly identified as the first branch of angiosperm evolution, followed by the Nymphaeales (water lillies), and then a clade of woody vines comprising Schisandraceae and Austrobaileyaceae. These findings are remarkably congruent with those from several concurrent molecular studies [5-7] and have important implications for whether or not the first angiosperms were woody and contained vessels, for interpreting the evolution of other key characteristics of basal angiosperms, and for understanding the timing and pattern of angiosperm origin and diversification.  (+info)

Allergic alveolitis due to herb dust exposure. (34/1498)

We report an episode of allergic alveolitis in a female farmer due to massive exposure to organic dust contaminated with microorganisms during threshing of herbs (thyme). The patient's medical history, the results of exposure test, inhalation challenge, and bronchoalveolar lavage suggested the diagnosis of allergic alveolitis  (+info)

HSP70 homolog functions in cell-to-cell movement of a plant virus. (35/1498)

Plant closteroviruses encode a homolog of the HSP70 (heat shock protein, 70 kDa) family of cellular proteins. To facilitate studies of the function of HSP70 homolog (HSP70h) in viral infection, the beet yellows closterovirus (BYV) was modified to express green fluorescent protein. This tagged virus was competent in cell-to-cell movement, producing multicellular infection foci similar to those formed by the wild-type BYV. Inactivation of the HSP70h gene by replacement of the start codon or by deletion of 493 codons resulted in complete arrest of BYV translocation from cell to cell. Identical movement-deficient phenotypes were observed in BYV variants possessing HSP70h that lacked the computer-predicted ATPase domain or the C-terminal domain, or that harbored point mutations in the putative catalytic site of the ATPase. These results demonstrate that the virus-specific member of the HSP70 family of molecular chaperones functions in intercellular translocation and represents an additional type of a plant viral-movement protein.  (+info)

Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. (36/1498)

Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids.  (+info)

Ozone depletion and UVB radiation: impact on plant DNA damage in southern South America. (37/1498)

The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280-315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone "hole;" no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315-400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55 degrees S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum.  (+info)

Alternative therapies used by women with breast cancer in four ethnic populations. (38/1498)

BACKGROUND: Interest in alternative therapies is growing rapidly in the United States. We studied the types and prevalence of conventional and alternative therapies used by women in four ethnic groups (Latino, white, black, and Chinese) diagnosed with breast cancer from 1990 through 1992 in San Francisco, CA, and explored factors influencing the choices of their therapies. METHODS: Subjects (n = 379) completed a 30-minute telephone interview in their preferred language. Logistic regression models assessed factors associated with the use of alternative therapies after a diagnosis of breast cancer. RESULTS: About one half of the women used at least one type of alternative therapy, and about one third used two types; most therapies were used for a duration of less than 6 months. Both the alternative therapies used and factors influencing the choice of therapy varied by ethnicity. Blacks most often used spiritual healing (36%), Chinese most often used herbal remedies (22%), and Latino women most often used dietary therapies (30%) and spiritual healing (26%). Among whites, 35% used dietary methods and 21% used physical methods, such as massage and acupuncture. In general, women who had a higher educational level or income, were of younger age, had private insurance, and exercised or attended support groups were more likely to use alternative therapies. About half of the women using alternative therapies reported discussing this use with their physicians. More than 90% of the subjects found the therapies helpful and would recommend them to their friends. CONCLUSIONS: Given the high prevalence of alternative therapies used in San Francisco by the four ethnic groups and the relatively poor communication between patients and doctors, physicians who treat patients with breast cancer should initiate dialogues on this topic to better understand patients' choices with regard to treatment options.  (+info)

Adenosine 5'-phosphosulfate sulfotransferase and adenosine 5'-phosphosulfate reductase are identical enzymes. (39/1498)

Adenosine 5'-phosphosulfate (APS) sulfotransferase and APS reductase have been described as key enzymes of assimilatory sulfate reduction of plants catalyzing the reduction of APS to bound and free sulfite, respectively. APS sulfotransferase was purified to homogeneity from Lemna minor and compared with APS reductase previously obtained by functional complementation of a mutant strain of Escherichia coli with an Arabidopsis thaliana cDNA library. APS sulfotransferase was a homodimer with a monomer M(r) of 43,000. Its amino acid sequence was 73% identical with APS reductase. APS sulfotransferase purified from Lemna as well as the recombinant enzyme were yellow proteins, indicating the presence of a cofactor. Like recombinant APS reductase, recombinant APS sulfotransferase used APS (K(m) = 6.5 microM) and not adenosine 3'-phosphate 5'-phosphosulfate as sulfonyl donor. The V(max) of recombinant Lemna APS sulfotransferase (40 micromol min(-1) mg protein(-1)) was about 10 times higher than the previously published V(max) of APS reductase. The product of APS sulfotransferase from APS and GSH was almost exclusively SO(3)(2-). Bound sulfite in the form of S-sulfoglutathione was only appreciably formed when oxidized glutathione was added to the incubation mixture. Because SO(3)(2-) was the first reaction product of APS sulfotransferase, this enzyme should be renamed APS reductase.  (+info)

Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. (40/1498)

Phospholipids play an important role in many signaling pathways in animal cells. Signaling cascades are triggered by the activation of phospholipid cleaving enzymes such as phospholipases C, D (PLD), and A(2). Their activities result in the formation of second messengers and amplification of the initial signal. In this study, we provide experimental evidence that PLD is involved in the early events of dehydration in the resurrection plant Craterostigma plantagineum. The enzymatic activity of the PLD protein was activated within minutes after the onset of dehydration, and although it was not inducible by abscisic acid, PLD activity did increase in response to mastoparan, which suggests a role for heterotrimeric G proteins in PLD regulation. Two cDNA clones encoding PLDs, CpPLD-1 and CpPLD-2, were isolated. The CpPLD-1 transcript was constitutively expressed, whereas CpPLD-2 was induced by dehydration and abscisic acid. Immunological studies revealed changes in the subcellular localization of the PLD protein in response to dehydration. Taken together, the data on enzymatic activity as well as transcript and protein distributions allowed us to propose a role for PLD in the events leading to desiccation tolerance in C. plantagineum.  (+info)