Multiple developmental roles for CRAC, a cytosolic regulator of adenylyl cyclase. (49/18083)

Receptor-mediated activation of adenylyl cyclase (ACA) in Dictyostelium requires CRAC protein. Upon translocation to the membrane, this pleckstrin homology (PH) domain protein stimulates ACA and thereby mediates developmental aggregation. CRAC may also have roles later in development since CRAC-null cells can respond to chemotactic signals and participate in developmental aggregation when admixed with wild-type cells, but they do not complete development within such chimeras. To test whether the role of CRAC in postaggregative development is related to the activation of ACA, chemotactic aggregation was bypassed in CRAC-null cells by activating the cAMP-dependent protein kinase (PKA). While such strains formed mounds, they did not complete fruiting body morphogenesis or form spores. Expression of CRAC in the prespore cells of these strains rescued sporulation and fruiting body formation. This later function of CRAC does not appear to require its PH domain since the C-terminal portion of the protein (CRAC-DeltaPH) can substitute for full-length CRAC in promoting spore cell formation and morphogenesis. No detectable ACA activation was observed in any of the CRAC-null strains rescued by PKA activation and expression of CRAC-DeltaPH. Finally, we found that the development of CRAC-null ACA-null double mutants could be rescued by the activation of PKA together with the expression of CRAC-DeltaPH. Thus, there appears to be a required function for CRAC in postaggregative development that is independent of its previously described function in the ACA activation pathway.  (+info)

Acute increase, stimulated by prostaglandin E2, in glucose absorption via the sodium dependent glucose transporter-1 in rat intestine. (50/18083)

BACKGROUND/AIMS: Acute stimulation by cAMP of the sodium dependent glucose cotransporter SGLT1 has previously been shown. As prostaglandin E2 (PGE2) increases intracellular cAMP concentrations via its receptor subtypes EP2R and EP4R, it was investigated whether PGE2 could enhance intestinal glucose absorption. METHODS: The action of PGE2 on carbohydrate absorption in the ex situ perfused rat small intestine and on 3-O-[14C]methylglucose uptake in isolated villus tip enterocytes was determined. Expression of mRNA for the PGE2 receptor subtypes 1-4 was assayed in enterocytes by reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS: In the perfused small intestine, PGE2 acutely increased absorption of glucose and galactose, but not fructose (which is not a substrate for SGLT1); in isolated enterocytes it stimulated 3-O-[14C]methylglucose uptake. The 3-O-[14C]methylglucose uptake could be inhibited by the cAMP antagonist RpcAMPS and the specific inhibitor of SGLT1, phlorizin. High levels of EP2R mRNA and EP4R mRNA were detected in villus tip enterocytes. CONCLUSION: PGE2 acutely increased glucose and galactose absorption by the small intestine via the SGLT1, with cAMP serving as the second messenger. PGE2 acted directly on the enterocytes, as the stimulation was still observed in isolated enterocytes and RT-PCR detected mRNA for the cAMP-increasing PGE2 receptors EP2R and EP4R.  (+info)

Pharmacological characterization of beta2-adrenoceptor in PGT-beta mouse pineal gland tumour cells. (51/18083)

1. The adrenoceptor in a mouse pineal gland tumour cell line (PGT-beta) was identified and characterized using pharmacological and physiological approaches. 2. Adrenaline and noradrenaline, adrenoceptor agonists, stimulated cyclic AMP generation in a concentration-dependent manner, but had no effect on inositol 1,4,5-trisphosphate production. Adrenaline was a more potent activator of cyclic AMP generation than noradrenaline, with half maximal-effective concentrations (EC50) seen at 175+/-22 nM and 18+/-2 microM for adrenaline and noradrenaline, respectively. 3. The addition of forskolin synergistically stimulated the adrenaline-mediated cyclic AMP generation in a concentration-dependent manner. 4. The pA2 value for the specific beta2-adrenoceptor antagonist ICI-118,551 (8.7+/-0.4) as an antagonist of the adrenaline-stimulated cyclic AMP generation were 3 units higher than the value for the betaI-adrenoceptor antagonist atenolol (5.6+/-0.3). 5. Treatment of the cells with adrenaline and forskolin evoked a 3 fold increase in the activity of serotonin N-acetyltransferase with the peak occurring 6 h after stimulation. 6. These results suggest the presence of beta2-adrenoceptors in mouse pineal cells and a functional relationship between the adenylyl cyclase system and the regulation of N-acetyltransferase expression.  (+info)

Specific inhibition of ADP-induced platelet aggregation by clopidogrel in vitro. (52/18083)

1. The thienopyridine clopidogrel is a specific inhibitor of ADP-induced platelet aggregation ex vivo. No direct effects of clopidogrel (< or = 100 microM) on platelet aggregation in vitro have been described so far. 2. Possible in vitro antiaggregatory effects (turbidimetry) of clopidogrel were studied in human platelet-rich plasma and in washed platelets. 3. Incubation of platelet-rich plasma with clopidogrel (< or = 100 microM) for up to 8 h did not result in any inhibition of ADP (6 microM)-induced platelet aggregation. 4. Incubation of washed platelets with clopidogrel resulted in a time- (maximum effects after 30 min) and concentration-dependent (IC50 1.9+/-0.3 microM) inhibition of ADP (6 microM)-induced platelet aggregation. Clopidogrel (30 microM) did not inhibit collagen (2.5 microg ml(-1))-, U46619 (1 microM)- or thrombin (0.1 u ml(-1))-induced platelet aggregation. The inhibition of ADP-induced aggregation by clopidogrel (30 microM) was insurmountable indicating a non-equilibrium antagonism of ADP actions. The R enantiomer SR 25989 C (30 microM) was significantly less active than clopidogrel (30 microM) in inhibiting platelet aggregation (32+/-5% vs 70+/-1% inhibition, P < 0.05, n = 5). 5. In washed platelets, clopidogrel (< or = 30 microM) did not significantly reverse the inhibition of prostaglandin E1 (1 microM)-induced platelet cyclic AMP formation by ADP (6 microM). 6. The antiaggregatory effects of clopidogrel were unchanged when the compound was removed from the platelet suspension. However, platelet inhibition by clopidogrel was completely abolished when albumin (350 mg ml(-1)) was present in the test buffer. 7. It is concluded that clopidogrel specifically inhibits ADP-induced aggregation of washed platelets in vitro without hepatic bioactivation. Inhibition of ADP-induced platelet aggregation by clopidogrel in vitro occurs in the absence of measurable effects on the reversal of PGE1-stimulated cyclic AMP by ADP.  (+info)

Induction of alveolar type II cell differentiation in embryonic tracheal epithelium in mesenchyme-free culture. (53/18083)

We have previously shown that fetal lung mesenchyme can reprogram embryonic rat tracheal epithelium to express a distal lung phenotype. We have also demonstrated that embryonic rat lung epithelium can be induced to proliferate and differentiate in the absence of lung mesenchyme. In the present study we used a complex growth medium to induce proliferation and distal lung epithelial differentiation in embryonic tracheal epithelium. Day-13 embryonic rat tracheal epithelium was separated from its mesenchyme, enrobed in growth factor-reduced Matrigel, and cultured for up to 7 days in medium containing charcoal-stripped serum, insulin, epidermal growth factor, hepatocyte growth factor, cholera toxin, fibroblast growth factor 1 (FGF1), and keratinocyte growth factor (FGF7). The tracheal epithelial cells proliferated extensively in this medium, forming lobulated structures within the extracellular matrix. Many of the cells differentiated to express a type II epithelial cell phenotype, as evidenced by expression of SP-C and osmiophilic lamellar bodies. Deletion studies showed that serum, insulin, cholera toxin, and FGF7 were necessary for maximum growth. While no single deletion abrogated expression of SP-C, deleting both FGF7 and FGF1 inhibited growth and prevented SP-C expression. FGF7 or FGF1 as single additions to the medium, however, were unable to induce SP-C expression, which required the additional presence of serum or cholera toxin. FGF10, which binds the same receptor as FGF7, did not support transdifferentiation when used in place of FGF7. These data indicate that FGF7 is necessary, but not sufficient by itself, to induce the distal rat lung epithelial phenotype, and that FGF7 and FGF10 play distinct roles in lung development.  (+info)

Separate receptors mediate oxytocin and vasopressin stimulation of cAMP in rat inner medullary collecting duct cells. (54/18083)

The two neurohypophysial hormones arginine vasopressin (AVP) and oxytocin have actions in the inner medullary collecting duct (IMCD) where both peptides induce an increase in cAMP accumulation. The present study has employed a novel IMCD cell line to determine whether these two hormones induce cAMP accumulation via common or separate receptors, and to characterize the potential receptors responsible. Equal volumes of vehicle (150 mM NaCl) or hormone/antagonist solutions were added to aliquots of 10(4) IMCD cells in the presence of 10(-3) M 3-isobutylmethylxanthine (IBMX) and incubated at 37 degrees C for 4 min. cAMP levels were determined by radioimmunoassay and protein concentration by Bradford assay. Both AVP and oxytocin elicited dose-dependent increases in cAMP generation, though oxytocin was less potent than AVP (EC50 = 1.6 x 10(-8) M vs. 7.4 x 10(-10) M). AVP at 10(-8) M and oxytocin at 10(-8) M, concentrations sufficient to elicit near-maximal cAMP accumulation, resulted in cAMP levels of 73.4 +/- 1.7 and 69.0 +/- 3.3 pmol (mg protein)-1 (4 min)-1, respectively (n = 10), compared with the vehicle-treated basal value of 37.7 +/- 2.2 pmol (mg protein)-1 (4 min)-1 (P < 0.001, n = 10). Combined AVP (10(-8) M) and oxytocin 10(-6) M) resulted in cAMP accumulation of 63.8 +/- 3.1 pmol (mg protein)-1 (4 min)-1 (n = 10), which was not significantly different from the effect of oxytocin alone, but slightly less than that for AVP alone (P < 0.05). A submaximal concentration of AVP (10(-10) M) induced cAMP accumulation of 48.6 +/- 2.5 pmol (mg protein)-1 (4 min)-1 (P < 0.01 compared with basal level of 34.9 +/- 2.4 pmol (mg protein)-1 (4 min)-1, n = 10), which was blocked in the presence of a vasopressin V2 receptor antagonist (10(-7) M OPC-31260) but not by the oxytocin receptor antagonist (10(-6) M [Pen1,pMePhe2, Thr4,Orn8]oxytocin) (36.3 +/- 6.1 and 45.1 +/- 1.3 pmol (mg protein)-1 (4 min)-1 respectively, P < 0.05, n = 10). A submaximal concentration of oxytocin (10(-7) M) induced a cAMP accumulation of 45.8 +/- 1.8 pmol (mg protein)-1 (4 min)-1 (n = 10), which was reduced by addition of 10(-6) M oxytocin antagonist (36.3 +/- 2.1 pmol (mg protein)-1 (4 min)-1, P < 0.05, n = 10), whereas co-incubation with 10(-6) M of the V2 receptor antagonist had no effect (43.2 +/- 1.3 pmol (mg protein)-1 (4 min)-1, n = 10). These results indicate that AVP and oxytocin induce cAMP accumulation from a common ATP pool in IMCD cells, and that separate vasopressin V2 and oxytocin receptor systems are involved, perhaps coupled to a common adenylate cyclase system.  (+info)

Anion efflux from cytotrophoblast cells derived from normal term human placenta is stimulated by hyposmotic challenge and extracellular A23187 but not by membrane-soluble cAMP. (55/18083)

The regulation of placental anion transport influences fetal accretion and placental homeostasis. We investigated whether efflux of 125I- or 36Cl- from multinucleated cytotrophoblast cells derived from human term placenta is regulated by one of three stimuli: (a) the calcium ionophore A23187, (b) a 'cocktail' of agents designed to raise intracellular levels of cAMP, (c) a hyposmotic solution. After loading with the appropriate isotope for 2 h and thorough washing, cells were exposed to sequential aliquots of buffer applied and removed each minute. Following an equilibration period of 5 min one of the stimuli was applied at room temperature At the end of the experiment the cells were lysed to give a lysate count which was used to express the count obtained from each aliquot as percentage efflux of that possible for that minute. The cAMP 'cocktail' and A23187 were applied for 5 min; the hyposmotic solution was applied for 10 min. The results for 125I- at 7 min showed that the mean efflux in the presence of hyposmotic shock was greater than control (5.7 +/- 1.0% min-1 versus 2.2 +/- 0.1% min-1, respectively; mean +/- S.E.M., n = 4 placentas). Similarly mean efflux at 6 min in the presence of A23187 was also significantly greater than control (6.5 +/- 1.9% min-1 versus 2.6 +/- 1.0% min-1, respectively, n = 3 placentas). The mean efflux in the presence of the cAMP cocktail was not different from control at any time point. The results were qualitatively the same if 36Cl- was used in the place of 125I- and when the experiment was performed with 36Cl- in a HCO3- buffer gassed with CO2. Mean 125I- efflux at 6 min in response to hyposmotic challenge was 33% less (P < 0.01) in the presence of 1 mM 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 37% less (P < 0.005) in the presence of 10 microM tamoxifen but no different if the hyposmotic solution was nominally calcium free. We conclude that there are differential effects of second messengers on anion efflux from the differentiated cytotrophoblast cells.  (+info)

A signaling pathway for stimulation of Na+ uptake induced by angiotensin II in primary cultured rabbit renal proximal tubule cells. (56/18083)

The aim of the present study was to examine the signaling pathways for a low dose of angiotensin II (ANG II) on Na+ uptake of primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined serum-free medium. The results were as follows; ANG II (10(-11) M) stimulated the proliferation of PTCs. 10(-11) M ANG II stimulated Na+ uptake by 20%, whereas 10(-9) M ANG II inhibited it by 20% (p < 0.05). The stimulatory effect of 10(-11) M ANG II on Na+ uptake was inhibited by amiloride (10(-3) M) and by losartan (ANG II receptor subtype 1 antagonist, 10(-8) M) but not by PD123319 (ANG II receptor subtype 2 antagonist, 10(-8) M). Pertussis toxin (PTX, 50 ng/ml) prevented the ANG II-induced stimulation of Na+ uptake (p < 0.01). 8-Bromoadenosine 3', 5'-cyclic monophosphate (8-Br-cAMP, 10(-6) M) did not affect Na+ uptake. SQ 22536 (adenylate cyclase inhibitor, 10(-6) M) also did not change the ANG II-induced stimulation of Na+ uptake. ANG II did not stimulate cAMP production. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA, 0.01 ng/ml) produced significant increase in Na+ uptake. When ANG II and TPA were added together to the PTCs, there was no additive effect on Na+ uptake. Staurosporine (calcium-dependant protein kinase C inhibitor, 10(-6) M) led to a complete inhibition of ANG II-induced stimulation of Na+ uptake. ANG II-treatment resulted in a 26% increase in total protein kinase C (PKC) activity. However, 10(-11) M ANG II did not change [Ca2+]i mobilization and [3H]-AA release while 10(-9) M ANG II increased both of them. In conclusion, the PTX-sensitive PKC pathway may be the main signaling cascade in the stimulatory effects of low dose of ANG II (10(-11) M) on Na+ uptake in the primary cultured rabbit renal proximal tubule cells in hormonally defined serum-free medium.  (+info)