In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron. (1/489)

The Didymium iridis DiSSU1 intron is located in the nuclear SSU rDNA and has an unusual twin-ribozyme organization. One of the ribozymes (DiGIR2) catalyses intron excision and exon ligation. The other ribozyme (DiGIR1), which along with the endonuclease-encoding I-DirI open reading frame (ORF) is inserted in DiGIR2, carries out hydrolysis at internal processing sites (IPS1 and IPS2) located at its 3' end. Examination of the in vivo expression of DiSSU1 shows that after excision, DiSSU1 is matured further into the I-DirI mRNA by internal DiGIR1-catalysed cleavage upstream of the ORF 5' end, as well as truncation and polyadenylation downstream of the ORF 3' end. A spliceosomal intron, the first to be reported within a group I intron and the rDNA, is removed before the I-DirI mRNA associates with the polysomes. Taken together, our results imply that DiSSU1 uses a unique combination of intron-supplied ribozyme activity and adaptation to the general RNA polymerase II pathway of mRNA expression to allow a protein to be produced from the RNA polymerase I-transcribed rDNA.  (+info)

Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin. (2/489)

The kinetics and thermodynamics for the polymerization of purified Acanthamoeba actin were studied and compared to muscle actin. Polymerization was qualitatively similar for the two actins with a rate-limiting nucleation step followed by rapid polymer extension. Polymerization occurred only above a threshold critical concentration which varied with polymerization conditions for each actin. In the presence of 2 mM MgCl2, nucleation of both actins was rapid and their critical concentrations were similarly low and not detectably dependent on temperature. In 0.1 M KCl, the rates of nucleation of both actins were much slower than when Mg2+ was present and were significantly different from each other. Also, under these conditions, the critical concentrations of Acanthamoeba and muscle actin were significantly different and both varied markedly with temperature. These quantitative differences between the two actins could be attributed to differences in both their enthalpies and entropies of polymerization, Acanthamoeba actin having the more positive deltaH and delta S. Co-polymerization of the two actins was also demonstrated. Overall, however, there were no qualitative differences between Acanthamoeba and muscle actin that would suggest a unique role for the monomer-polymer equilibrium of cytoplasmic actin in cell motility.  (+info)

Timing of nucleolar DNA replication in Amoeba proteus. (3/489)

Light- and electron-microscope autoradiography have been used to follow the incorporation of [3H]thymidine at different stages during the interphase of synchronously growing populations of Amoeba proteus. Two main patterns were found for tritiated thymidine incorporation, i.e. DNA synthesis. The major incorporation was in the central region of the nucleus, but a lesser degree of incorporation occurred in the nucleolar region. The bulk of this nucleolar DNA was found to be late replicating, i.e. it replicated during the G2 phase.  (+info)

Serum antibodies to Balamuthia mandrillaris, a free-living amoeba recently demonstrated to cause granulomatous amoebic encephalitis. (4/489)

Free-living amoebae cause three well-defined disease entities: a rapidly fatal primary meningoencephalitis, a chronic granulomatous amoebic encephalitis (GAE), and a chronic amoebic keratitis. GAE occurs in immunocompromised persons. Recently, another type of free-living amoeba, Balamuthia mandrillaris, has been shown to cause GAE. The finding that this amoeba has caused infection in some healthy children has raised the possibility that humans may lack immunity to B. mandrillaris. Human serum was examined for the presence of surface antibodies specific for this amoeba by immunofluorescence. Sera from adults contained titers of 1/64-1/256 of anti-B. mandrillaris antibodies (IgM and IgG classes), which did not cross-react with other amoebae. Cord blood contained very low antibody levels, but levels similar to those in adults were seen in serum of 1- to 5-year-old children.  (+info)

The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba. (5/489)

The temperature-dependent assembly and the interaction of Acanthamoeba contractile proteins have been studied in a crude extract. A cold extract of soluble proteins from Acanthamoeba castellanii is prepared by homogenizing the cells in a sucrose-ATP-ethyleneglycol-bis-(beta-aminoethyl ether) N,N'-tetraacetic acid buffer and centrifuging at 136,000 g for 1 h. When this supernate of soluble proteins is warmed to room temperature, it forms a solid gel. Upon standing at room temperature, the gel slowly contracts and squeezes out soluble components. The rates of gelation and contraction are both highly temperature dependent, with activation energies of about 20 kcal per mol. Gel formation is dependent upon the presence of ATP and Mg++. Low concentrations of Ca++ accelerate the contractile phase of this phenomenon. The major protein component of the gel is actin. It is associated with myosin, cofactor, a high molecular weight protein tentatively identfied as actin-binding protein, and several other unidentified proteins. Actin has been purified from these gels and was found to be capable of forming a solid gel when polymerized in the presence of ATP, MgCl3, and KCL. The rate of purified actin polymerication is very temperature dependent and is accelerated by the addition of fragments of muscle actin filaments. These data suggest that Acanthamoeba contractile proteins have a dual role in the cell; they may generate the forces for cellular movements and also act as cytoskeletal elements by controlling the consistency of the cytoplasm.  (+info)

Isolation and electrophoretic analysis of nucleoli, phenol-soluble nuclear proteins, and outer cyst walls from Acanthamoeba castellanii during encystation initiation. (6/489)

A technique is described for isolating nuceoli from Acanthamoeba castellanii. Nuclei isolated by a modification of the technique of F. J. Chlapowski and R. N. Band (1971) are sonicated in a surcrose-Tris-MgSO4-KC1-Triton X-100 buffer and centrifuged on a linear sucrose gradient extending from 1.3 M to 1.5 M with a 2.6 M cushion, at 41000 rpm for 90 min. The only apparent contaminants in the nucleolar preparation are outer cyst walls. A procedure is described for the isolation of chemically pure outer cyst walls, and a comparison of the proteins with the nucleolar preparation reveals that outer cyst walls represent negligible contaminants. The ultrastructure of these isolated nucleoli examined with transmission electron microscopy is found to be identical with that of nucleoli from whole cells, fixed in an identical manner. The 50 nucleolar proteins separated by SDS gel electrophoresis have been examined throughout the growth cycle of Acanthamoeba and into the strat of induced encystment, at which time 10 protein bands disappear, 11 bands are observed to decrease, and 8 are seen to increase in concentration. Phenol-soluble proteins are extracted from the nucleolus which correspond to 29 of the 50 nucleolar proteins, with 17 of these proteins corresponding to nucleolar proteins that change at the onset of encystment. Thes nucleolar proteins are also compared with those of rat liver nucleoli by gel electrophoresis, resulting in the observation that extremely few protein homologies exist between the two. Numerous quantitative and qualitative changes in the gel pattern of phenol-soluble nuclear proteins during early and late log phase growth and the onset of stationary phase were also observed.  (+info)

Signal-mediated nuclear transport in the amoeba. (7/489)

The evolutionary changes that occur in signal-mediated nuclear transport would be expected to reflect an increasing need to regulate nucleocytoplasmic exchanges as the complexity of organisms increases. This could involve changes in both the composition and structure of the pore complex, as well as the cytosolic factors that mediate transport. In this regard, we investigated the transport process in amoebae (Amoeba proteus and Chaos carolinensis), primitive cells that would be expected to have less stringent regulatory requirements than more complex organisms. Colloidal gold particles, coated with bovine serum albumin (BSA) conjugated with simple (large T) nuclear localization signals (NLSs), bipartite (nucleoplasmin) NLSs or mutant NLSs, were used to assay nuclear import. It was found that in amoebae (1) the diameter of the particles that are able to enter the nucleoplasm is significantly less than in vertebrate cells, (2) the simple NLS is more effective in mediating nuclear import than the bipartite NLS, and (3) the nucleoporins do not appear to be glycosylated. Evidence was also obtained suggesting that, in amoebae, the simple NLS can mediate nuclear export.  (+info)

Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum. (8/489)

Amoebae of Dictyostelium discoideum were attached to a surface coated with polylysine, and the upper portion of the cells was sheared off with a stream of buffer. Scanning and transmission electron microscopy showed that the cytoplasmic surface of the exposed membrane was covered with fibers consisting of actin-containing filaments. The actin was identified by its solubility properties and its ability to interact with muscle myosin.  (+info)