The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. (1/129)

Primary headache syndromes, such as cluster headache and migraine, are widely described as vascular headaches, although considerable clinical evidence suggests that both are primarily driven from the brain. The shared anatomical and physiologic substrate for both of these clinical problems is the neural innervation of the cranial circulation. Functional imaging with positron emission tomography has shed light on the genesis of both syndromes, documenting activation in the midbrain and pons in migraine and in the hypothalamic gray in cluster headache. These areas are involved in the pain process in a permissive or triggering manner rather than as a response to first-division nociceptive pain impulses. In a positron emission tomography study in cluster headache, however, activation in the region of the major basal arteries was observed. This is likely to result from vasodilation of these vessels during the acute pain attack as opposed to the rest state in cluster headache, and represents the first convincing activation of neural vasodilator mechanisms in humans. The observation of vasodilation was also made in an experimental trigeminal pain study, which concluded that the observed dilation of these vessels in trigeminal pain is not inherent to a specific headache syndrome, but rather is a feature of the trigeminal neural innervation of the cranial circulation. Clinical and animal data suggest that the observed vasodilation is, in part, an effect of a trigeminoparasympathetic reflex. The data presented here review these developments in the physiology of the trigeminovascular system, which demand renewed consideration of the neural influences at work in many primary headaches and, thus, further consideration of the physiology of the neural innervation of the cranial circulation. We take the view that the known physiologic and pathophysiologic mechanisms of the systems involved dictate that these disorders should be collectively regarded as neurovascular headaches to emphasize the interaction between nerves and vessels, which is the underlying characteristic of these syndromes. Moreover, the syndromes can be understood only by a detailed study of the cerebrovascular physiologic mechanisms that underpin their expression.  (+info)

Cluster headache-like attack as an opening symptom of a unilateral infarction of the cervical cord: persistent anaesthesia and dysaesthesia to cold stimuli. (2/129)

A 54 year old man experienced excruciating left retro-orbital pain with lacrimation and redness of the eye representative of a cluster headache attack. This was followed by left hemiparesis with plegia of the lower limb and left Horner's syndrome. Five days later the hemiparesis recovered while the patient developed hypoanaesthesia to cold stimuli that evoked painful burning dysaesthesia on the right side below the C4 level. MRI disclosed a discrete infarct in the left lateral aspect of the cord at C2 level concomitant to a left vertebral artery thrombosis. This limited infarct and the clinical symptoms suggest a hypoperfusion in the peripheral arterial system of the left hemicord, supplied both by the anterior and posterior spinal arteries. Cluster headache-like attack and persistent dysaesthesia to cold stimuli are discussed respectively in view of the central sympathetic involvement and partial spinothalamic system dysfunction.  (+info)

Cluster headache-like disorder in childhood. (3/129)

This paper reviews the diagnostic features of cluster headache-like disorder and describes its presentation in childhood. Case note summaries of patients with this condition are presented in the context of a brief summary of the literature. Four patients (two girls; aged 12 to 15 years) with cluster headache-like disorder were seen over a period of four years in the paediatric neurology department of Birmingham Children's Hospital. Their histories and clinical courses are described. All had a history of "thrashing around" or bizarre behaviour during attacks, which had distracted attention from the headache and seemed to contribute to delay in diagnosis. It appears that cluster headache-like disorder does occur in childhood but is not common and can be mistaken for other conditions. A history of thrashing around accompanied by headache is very suggestive. Recognition of the symptoms in the general paediatric clinic would allow rapid diagnosis.  (+info)

Cluster-tic syndrome: report of five new cases. (4/129)

The so-called short lasting primary headaches include heterogenic entities that can be divided between those without pronounced autonomic activation and those where this activation is evident, which includes the cluster-tic syndrome. We report five new cases with age closer to the trigeminal neuralgia's one, and concomitance of cluster headache and trigeminal neuralgia, which is less frequent in the literature. We also discuss briefly the pathophysiology of these clinical entities, suggesting that the trigeminus nerve is a common pathway of pain manifestation.  (+info)

Cluster headache in women: clinical characteristics and comparison with cluster headache in men. (5/129)

OBJECTIVE: To study the clinical characteristics of cluster headache in women. Cluster headache is a disorder of men (male to female ratio 6-7:1). METHODS: Retrospective chart review to identify all women diagnosed with cluster headache at an academic headache centre from January 1995 through July 1998. RESULTS: Thirty two women and 69 men were identified. The mean age of onset of cluster headache was 29.4 years in women versus 31.3 years in men. Two peaks of onset in women (2nd and 5th decade) were identified compared with one in men (3rd decade). Episodic cluster headache was present in 75% of women and 77% of men. Women and men had on average 3 attacks a day, but attack duration was shorter in women (67.2 minutes v 88.2 minutes). Cluster headache period duration (11.1 weeks v 10 weeks) and remission periods (21.1 months v 23.1 months) were similar in women and men. Miosis and ptosis seemed to be less common in women (miosis 13.3% v 24.6%, ptosis 41.9% v 58.1%) whereas lacrimation and nasal congestion/rhinorrhoea were almost equally prevalent in women and men. Women had more nausea than men (62.5% v 43.5%, p=0.09) and significantly more vomiting (46.9% v 17.4%, p=0.003). Photophobia occurred in 75% of women and 81.2% of men, and phonophobia occurred in 50% of women and 47.8% of men. CONCLUSIONS: The clinical characteristics of cluster headache in women are very similar to those in men. Women develop the disorder at an earlier age of onset and experience more "migrainous symptoms" with cluster headache, especially vomiting. Both men and women have frequent photophobia and phonophobia with cluster headache attacks. These symptoms are not included in the International Headache Society cluster headache criteria, suggesting the need for possible criteria revision.  (+info)

Management of primary headache: serendipity and science. (6/129)

Most patients find some relief with current agents, even though a poor understanding of the causes of chronic primary headache limits prophylaxis and treatment. The author reviews current preventive and treatment strategies for migraine, chronic tension headache, cluster headache, and substance withdrawal headache.  (+info)

Episodic paroxysmal hemicrania with seasonal variation: case report and the EPH-cluster headache continuum hypothesis. (7/129)

Episodic paroxysmal hemicrania (EPH) is a rare disorder characterized by frequent, daily attacks of short-lived, unilateral headache with accompanying ipsilateral autonomic features. EPH has attack periods which last weeks to months separated by remission intervals lasting months to years, however, a seasonal variation has never been reported in EPH. We report a new case of EPH with a clear seasonal pattern: a 32-year-old woman with a right-sided headache for 17 years. Pain occurred with a seasonal variation, with bouts lasting one month (usually in the first months of the year) and remission periods lasting around 11 months. During these periods she had headache from three to five times per day, lasting from 15 to 30 minutes, without any particular period preference. There were no precipitating or aggravating factors. Tearing and conjunctival injection accompanied ipsilaterally the pain. Previous treatments provided no pain relief. She completely responded to indomethacin 75 mg daily. After three years, the pain recurred with longer attack duration and was just relieved with prednisone. We also propose a new hypothesis: the EPH-cluster headache continuum.  (+info)

Persistence of attacks of cluster headache after trigeminal nerve root section. (8/129)

Cluster headache is a strictly unilateral headache that occurs in association with cranial autonomic features. We report a patient with a trigeminal nerve section who continued to have attacks. A 59-year-old man described a 14-year history of left-sided episodes of excruciating pain centred on the retro-orbital and orbital regions. These episodes lasted 1-4 h, recurring 2-3 times daily. The attacks were associated with ipsilateral ptosis, conjunctival injection, lacrimation, rhinorrhoea and facial flushing. From 1986 to 1988, he had trials of medications without any benefit. In February 1988, he had complete surgical section of the left trigeminal sensory root that shortened the attacks in length for 1 month without change in their frequency or character. In April 1988, he had further surgical exploration and the root was found to be completely excised; post-operatively, there was no change in the symptoms. From 1988 to 1999, he had a number of medications, including verapamil and indomethacin, all of which were ineffective. Prednisolone 30 mg orally daily rendered the patient completely pain free. Sumatriptan 100 mg orally and 6 mg subcutaneously aborted the attack after approximately 45 and 15 min, respectively. He was completely anaesthetic over the entire left trigeminal distribution. Left corneal reflex was absent. Motor function of the left trigeminal nerve was preserved. Neurological and physical examination was otherwise normal. MRI scan showed a marked reduction in the calibre of the left trigeminal nerve from the nerve root exit zone in the pons to Meckel's cave. An ECG-gated three-dimensional multislab MRI inflow angiogram was performed. No dilatation was observed in the left internal carotid artery during the cluster attack. Blink reflexes were elicited with a standard electrode and stimulus. Stimulation of the left supraorbital nerve produced neither ipsilateral nor contralateral blink reflex response. Stimulation of the right supraorbital nerve produced an ipsilateral response with a mean R2 onset latency of 36 ms and a contralateral response with a mean R2 onset latency of 32 ms. Lack of ipsilateral vessel dilatation makes the role of vascular factors in the initiation of cluster attacks questionable. With complete section of the left trigeminal sensory root the brain would perceive neither vasodilatation nor a peripheral neural inflammatory process; however, the patient continued to have an excellent response to sumatriptan. The case illustrates that cluster headache may be generated primarily from within the brain, and that triptans may have anti-headache effects through an entirely central mechanism.  (+info)