Independence of and interactions between GABA-, glutamate-, and acetylcholine-activated Cl conductances in Aplysia neurons. (1/188)

In certain Aplysia neurons, glutamate, GABA, and acetylcholine (ACh) all elicit desensitizing Cl-dependent responses. This fact and the finding that the glutamate and GABA responses "cross-desensitize" led to the suggestion (Swann and Carpenter, 1975; King and Carpenter, 1987) that the responses to these transmitters were mediated by the same receptor-channel complex. This hypothesis is incompatible with the demonstration given here that the GABA- and glutamate-gated channels are clearly distinct; the GABA channel, but not the glutamate channel, shows outward rectification (Matsumoto, 1982; King and Carpenter, 1987, 1989) and is selectively blocked by intracellular sulfate. Exploiting these distinctive characteristics and the independent expression of the receptors in some cells, we have been able to reevaluate the so-called cross-desensitization by analyzing the ability of GABA, glutamate, and other agonists to interact with each of the receptor molecules. The cross-desensitization was found to be exclusively attributable to the ability of GABA to interact with the glutamate receptor (Oyama et al., 1990). The GABA receptor is unaffected by glutamate. Nevertheless, in cells expressing both receptors, glutamate can reduce the GABA response by auto-desensitizing the part of the response that is mediated by the glutamate receptor. No interactions were observed between ACh-induced responses and either of the responses elicited by the amino acids. The invertebrate glutamate-gated Cl channels that have been cloned resemble the vertebrate glycine receptor (Vassilatis et al., 1997). Our pharmacological evaluation of the molluscan glutamate receptor points in the same direction.  (+info)

Pharmacological differences between memory consolidation of habituation to an open field and inhibitory avoidance learning. (2/188)

Rats implanted bilaterally with cannulae in the CA1 region of the dorsal hippocampus or the entorhinal cortex were submitted to either a one-trial inhibitory avoidance task, or to 5 min of habituation to an open field. Immediately after training, they received intrahippocampal or intraentorhinal 0.5-microl infusions of saline, of a vehicle (2% dimethylsulfoxide in saline), of the glutamatergic N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphono pentanoic acid (AP5), of the protein kinase A inhibitor Rp-cAMPs (0.5 microg/side), of the calcium-calmodulin protein kinase II inhibitor KN-62, of the dopaminergic D1 antagonist SCH23390, or of the mitogen-activated protein kinase kinase inhibitor PD098059. Animals were tested in each task 24 h after training. Intrahippocampal KN-62 was amnestic for habituation; none of the other treatments had any effect on the retention of this task. In contrast, all of them strongly affected memory of the avoidance task. Intrahippocampal Rp-cAMPs, KN-62 and AP5, and intraentorhinal Rp-cAMPs, KN-62, PD098059 and SCH23390 caused retrograde amnesia. In view of the known actions of the treatments used, the present findings point to important biochemical differences in memory consolidation processes of the two tasks.  (+info)

Previous exposure to amphetamine enhances the subsequent locomotor response to a D1 dopamine receptor agonist when glutamate reuptake is inhibited. (3/188)

The role of nucleus accumbens (NAcc) glutamate (GLU) and D(1) dopamine (DA) receptor activation in the expression of locomotor sensitization to amphetamine (AMPH) was investigated in rats. Rats were preexposed to either AMPH or saline, and 2 weeks later their locomotion was assessed after a microinjection into the NAcc of the selective glutamate reuptake blocker l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) (10 nmol per side), the D(1)-like DA receptor agonists SKF82958 (2.4 nmol per side) and SKF38393 (3.1 nmol per side), the D(2)-like DA receptor agonist quinelorane (3.1 nmol per side), or AMPH (6.8 nmol per side). All compounds other than quinelorane increased locomotion when infused into the NAcc. Only AMPH, however, produced enhanced locomotion in AMPH relative to saline-preexposed rats. When additional rats were tested after NAcc infusions of PDC together with either SKF82958 or quinelorane, enhanced locomotion was observed in AMPH relative to saline-preexposed rats after NAcc PDC + SKF82958. These results suggest that in the NAcc, increased GLU neurotransmission and activation of D(1) DA receptors, neither of which is by itself sufficient, together contribute to the expression of locomotor sensitization by AMPH. They stress, with other findings, the importance of GLU-DA interactions in the NAcc not only in the generation of acute stimulant drug effects but in sensitized responding to these drugs as well.  (+info)

Quinazolone-alkyl-carboxylic acid derivatives inhibit transmembrane Ca(2+) ion flux to (+)-(S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid. (4/188)

Comparison of the kinetics of the inward Ca(2+) ion flux to (S)-alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid [(S)-AMPA] in cerebrocortical homogenates and that of the previously reported transmembrane Na(+) ion influx mediated by an AMPA receptor in hippocampal homogenates established that the agonist-induced opening of the AMPA receptor channels occurs in two kinetically distinguishable phases. Here we report that the 2-methyl-4-oxo-3H-quinazoline-3-acetic acid (Q1) inhibits the major slow-phase response specifically, whereas the acetyl piperidine derivative (Q5) is a more potent inhibitor of the fast-phase response. Both the quinazolone-3-propionic acid (Q2) and the quinazolone-3-acetic acid methyl ester (Q3) enhanced the slow-phase response to (S)-AMPA. The information provided by docking different Q1, Q2, and Q5 models at the ligand-binding core of iGluRs were used to define agonistic and antagonistic modes of interactions. Based on the effects of quinazolone-3-alkyl-carboxylic acid derivatives on specific [(3)H]Glu binding and kinetically distinguishable Ca(2+) ion permeability responses to (S)-AMPA and molecular modeling, the fast- and the slow-phase (S)-AMPA-elicited Ca(2+) ion fluxes were corresponded to different subunit compositions and degrees of S1S2 bridging interaction relative to substitution of kainate thereupon. Substitutions of agonists and antagonists into the iGluR2 S1S2 ligand binding core induced different modes of domain-domain bridging.  (+info)

Amino acid derivatives with anticonvulsant activity. (5/188)

A series of benzylamides of N-alkylated, N-acylated or free nine cyclic and one linear amino acids as potential anticonvulsants have been synthesized. The structures of the obtained compounds were designed on the basis of the previously determined structure and physicochemical properties/anticvonvulsant activity relationship of the formerly synthesized compounds of this type. The obtained compounds were evaluated in mice after intraperitoneal (i.p.) administration, by maximal electroshock seizure test (MES test), subcutaneous (s.c.) pentylenetetrazol test (s.c. PTZ test) and by the rotarod neurotoxicity test (Tox test). The results were the basis for their classification into one of three classes of the Anticonvulsant Screening Project (ASP) of the Antiepileptic Drug Development Program (ADDP) of the NIH. Three selected compounds were tested quantitatively in rats after oral administration. The MES ED50, s.c. PTZ ED50, Tox TD50 were determined and their protective index (PI) values were calculated. Anticonvulsant activity of the most promising compound (15) was examined in different seizure models. The respective ED50 and PI values of this compound were as follows: against bicuculline, 73 and 1.4; against PTZ, 47 and 2.2; against strychnine, 73 and 1.4; against pilocarpine 156, and 0.7; against kainic acid (2-carboxy-4-isopropenyl-3-pyrrolidineacetic acid), 39 and 2.6; against AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), 10 and 10.3 and against NMDA (N-methyl-D-Aspartic acid), 114 and 0.9.  (+info)

Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes. (6/188)

Since excitotoxicity has been implicated in a variety of neuropathological conditions, understanding the pathways involved in this type of cell death is of critical importance to the future clinical treatment of many diseases. The N-methyl-D-aspartate (NMDA) receptor has become a primary focus of excitotoxic research because early studies demonstrated that antagonism of this receptor subtype was neuroprotective. However, initial pharmacological agents were not clinically useful due to the adverse effects of complete NMDA receptor blockade. Understanding the biochemical properties of the multitude of NMDA receptor subtypes offers the possibility of developing more effective and clinically useful drugs. With the discovery of the basis of heterogeneity of NMDA receptors through molecular biological approaches, many new potential therapeutic targets have been uncovered, and several model systems have been developed for the study of NMDA receptor-mediated cell death. This review discusses these models and the current understanding of the relationship between NMDA receptor subtypes and excitotoxicity.  (+info)

Role of cyclooxygenase-2 in neuronal cell cycle activity and glutamate-mediated excitotoxicity. (7/188)

In previous studies we found that neuronal overexpression of human cyclooxygenase (COX)-2 in transgenic mice potentiated excitotoxicity in vivo and in vitro. To clarify the molecular mechanisms involved in COX-2-mediated potentiation of excitotoxicity, we used cDNA microarray to identify candidate genes the expression of which is altered in the cerebral cortex of homozygous human hCOX-2 transgenic mice. We found that the mRNA expression of the cell cycle kinase (CDK) inhibitor-inhibitor kinase (INK) p18(INK4), a specific inhibitor of CDK 4,6, which controls the activation of the retinoblastoma (Rb) tumor suppressor protein phosphorylation, was decreased in the brain of adult hCOX-2 homozygous transgenics. Conversely, chronic treatment of the hCOX-2 transgenics with the preferential COX-2 inhibitor nimesulide reversed the hCOX-2-mediated decrease of cortical p18(INK4) mRNA expression in the brain. Further in vitro studies revealed that in primary cortico-hippocampal neurons derived from homozygous hCOX-2 transgenic mice, COX-2 overexpression accelerates glutamate-mediated apoptotic damage that is prevented by the CDK inhibitor flavoperidol. Moreover, treatment of wild-type primary cortico-hippocampal neuron cultures with the COX-2 preferential inhibitor nimesulide significantly attenuated glutamate-mediated apoptotic damage, which coincided with inhibition of glutamate-mediated pRb phosphorylation. These data indicate that hCOX-2 overexpression causes neuronal cell cycle deregulation in the brain and provides further rationale for targeting neuronal COX-2 in neuroprotective therapeutic research.  (+info)

Neurohormonal and glutamatergic neuronal control of the cardioarterial valves in the isopod crustacean Bathynomus doederleini. (8/188)

The heart of Bathynomus doederleini gives rise to an anterior median artery (AMA), one pair of anterior lateral arteries (ALAs) and five pairs of lateral arteries (LAs). Cardioarterial valves are located at the junctions between the heart and arteries, each composed of a pair of muscular flaps. All valves of the AMA and the ALAs receive valve excitatory (constrictor) nerves (VEs). The valves of the ALAs receive dual innervation from both constrictor and inhibitor (dilator) nerves, while the valves of the AMA receive innervation from a constrictor nerve alone. The effects of candidate neurohormones on cardioarterial valves were examined by measuring the pressure in each artery at which haemolymph flows out of the heart through the valve. Serotonin, octopamine, norepinephrine, glutamate (Glu) and proctolin constricted the cardioarterial valves and thus decreased the arterial pressure in all the arteries. Dopamine also decreased the arterial pressure of arteries except for the ALAs, in which pressure was increased. Among the neurohormones exerting excitatory effects on the valves, only Glu depolarized the membrane potential of valve muscle cells. The glutamatergic agonists kainate and quisqualate also depolarized the valve muscle cells of the AMA. Excitatory junctional potentials produced in the valves of the AMA in response to the stimulation of a VE were blocked by the glutamatergic antagonists Joro spider toxin and MK-801. Glu is the likeliest candidate for a neurotransmitter for the VEs.  (+info)