Brown adipose tissue triacylglycerol synthesis in rats adapted to a high-protein, carbohydrate-free diet. (33/12330)

Adaptation of rats to a high-protein, carbohydrate-free (HP) diet induced a marked reduction of brown adipose tissue (BAT) fatty acid (FA) synthesis from both 3H2O and [14C]glucose in vivo, with pronounced decreases in the activities of four enzymes associated with lipogenesis: glucose-6-phosphate dehydrogenase, malic enzyme, citrate lyase, and acetyl-CoA carboxylase. In both HP-adapted and control rats, in vivo incorporation of 3H2O and [14C]glucose into BAT glyceride-glycerol was much higher than into FA. It could be estimated that most of the glycerol synthetized was used to esterify preformed FA. Glycerol synthesis from nonglucose sources (glyceroneogenesis) was increased in BAT from HP rats, as evidenced by an increased capacity of tissue fragments to incorporate [1-14C]pyruvate into glycerol and by a fourfold increase in the activity of phosphoenolpyruvate carboxykinase activity, a key glyceroneogenic enzyme. The data suggest that high rates of glyceroneogenesis and of esterification of preformed FA in BAT from HP-adapted rats are essential for preservation of tissue lipid stores, necessary for heat generation when BAT is recruited in nonshivering thermogenesis.  (+info)

Transformations in embryonic motility in chick: kinematic correlates of type I and II motility at E9 and E12. (34/12330)

Soon after hatching, chicks exhibit an array of adaptive, coordinated behaviors. Chick embryos also acquire nearly 18 days of movement experience, referred to as embryonic motility, before hatching. The chick expresses three forms of motility, types I, II, and III, and each emerges at a different stage of embryonic development. Although much is known about the mechanisms associated with motility at early embryonic stages and at the onset of hatching, the transformations in behavior and underlying mechanisms are not fully understood. Thus the purpose of this study was to determine how motility is modified during the first expected transformation, from type I to type II. It was hypothesized that kinematic features for motility at embryonic day 12 (E12) would differ significantly from features at E9 because type II motility emerges during E11. Embryos were video taped for extended intervals in ovo at E9 or E12 and entire sequences of motility were computer digitized for kinematic analyses. Results reported here indicate that several of the kinematic features characteristic of motility at E9 are also reliable features at E12. On the basis of these findings, a kinematic definition of type I motility is posed for use in subsequent behavioral studies. Several parameters distinguished motility at E12 from E9. The most notable difference between ages was the less regular timing of repetitive limb movements at E12, a finding consistent with recent reports suggesting early motility is an emergent product of a transient neural network rather than a specialized pattern generator. As predicted from established definitions for type II motility, startle-like movements were common at E12; however, they also were present in many kinematic plots at E9, suggesting the discreet age-dependent boundaries in the established definition for type II motility may require modification. Some age-related differences, such as increased intralimb coordination and excursion velocity, may be prerequisites for adaptive behavior after hatching.  (+info)

Citrate ions enhance taste responses to amino acids in the largemouth bass. (35/12330)

The glossopharyngeal (IX) taste system of the largemouth bass, Micropterus salmoides, is highly selective to amino acids and is poorly responsive to trisodium citrate; however, IX taste responses to specific concentrations of L- and D-arginine and L-lysine but not L-proline were enhanced by citrate but not sodium ions. Binary mixtures of L-arginine (3 x 10(-4)M and 10(-3)M) or D-arginine (10(-3)M) + trisodium citrate (10(-3)M; pH 7-9) resulted in enhanced taste activity, whereas binary mixtures of higher concentrations (10(-2)M and 10(-1)M) of L- or D-arginine + 10(-3)M trisodium citrate were not significantly different from the response to the amino acid alone. Under continuous adaptation to 10(-3)M citrate, taste responses to L-arginine were also enhanced at the identical concentrations previously indicated, but responses to 10(-2)M and 10(-1)M L-arginine were significantly suppressed. Under continuous adaptation to 10(-2)M L-arginine, taste responses to 10(-2)M, 10(-1)M, and 10(0) M citrate were significantly enhanced. Cellular concentrations of both citrate and amino acids in prey of the carnivorous largemouth bass are sufficient for this taste-enhancing effect to occur naturally during consummatory feeding behavior. Citrate acting as a calcium chelator is presented as a possible mechanism of action for the enhancement effect.  (+info)

Reacquisition deficits in prism adaptation after muscimol microinjection into the ventral premotor cortex of monkeys. (36/12330)

A small amount of muscimol (1 microl; concentration, 5 microg/microl) was injected into the ventral and dorsal premotor cortex areas (PMv and PMd, respectively) of monkeys, which then were required to perform a visually guided reaching task. For the task, the monkeys were required to reach for a target soon after it was presented on a screen. While performing the task, the monkeys' eyes were covered with left 10 degrees, right 10 degrees, or no wedge prisms, for a block of 50-100 trials. Without the prisms, the monkeys reached the targets accurately. When the prisms were placed, the monkeys initially misreached the targets because the prisms displaced the visual field. Before the muscimol injection, the monkeys adapted to the prisms in 10-20 trials, judging from the horizontal distance between the target location and the point where the monkey touched the screen. After muscimol injection into the PMv, the monkeys lost the ability to readapt and touched the screen closer to the location of the targets as seen through the prisms. This deficit was observed at selective target locations, only when the targets were shifted contralaterally to the injected hemisphere. When muscimol was injected into the PMd, no such deficits were observed. There were no changes in the reaction and movement times induced by muscimol injections in either area. The results suggest that the PMv plays an important role in motor learning, specifically in recalibrating visual and motor coordinates.  (+info)

Cerebellar lesions and prism adaptation in macaque monkeys. (37/12330)

If a laterally displacing prism is placed in front of one eye of a person or monkey with the other eye occluded, they initially will point to one side of a target that is located directly in front of them. Normally, people and monkeys adapt easily to the displaced vision and correct their aim after a few trials. If the prism then is removed, there is a postadaptation shift in which the subject misses the target and points in the opposite direction for a few trials. We tested five Macaque monkeys for their ability to adapt to a laterally displacing prism and to show the expected postadaptation shift. When tested as normals, all five animals showed the typical pattern of adaptation and postadaptation shift. Like human subjects, the monkeys also showed complete interocular transfer of the adaptation but no transfer of the adaptation between the two arms. When preoperative training and testing was complete, we made lesions of various target areas on the cerebellar cortex. A cerebellar lesion that included the dorsal paraflocculus and uvula abolished completely the normal prism adaptation for the arm ipsilateral to the lesion in one of the five monkeys. The other four animals retained the ability to prism-adapt normally and showed the expected postadaptation shift. In the one case in which the lesion abolished prism adaptation, the damage included Crus I and II, paramedian lobule and the dorsal paraflocculus of the cerebellar hemispheres as well as lobule IX, of the vermis. Thus in this case, the lesion included virtually all the cerebellar cortex that receives mossy-fiber visual information relayed via the pontine nuclei from the cerebral cortex. The other four animals had damage to lobule V, the classical anterior lobe arm area and/or vermian lobules VI/VII, the oculomotor region. When tested postoperatively, some of these animals showed a degree of ataxia equivalent to that of the case in which prism adaptation was affected, but prism adaptation and the postadaptation shift remained normal. We conclude that in addition to its role in long-term motor learning and reflex adaptation, the region of the cerebellum that was ablated also may be a critical site for a short-term motor memory. Prism adaptation seems to involve a region of the cerebellum that receives a mossy-fiber visual error signal and probably a corollary discharge of the movement.  (+info)

Perception of and adaptation to rectal isobaric distension in patients with faecal incontinence. (38/12330)

BACKGROUND: Perception of, and adaptation of the rectum to, distension probably play an important role in the maintenance of continence, but perception studies in faecal incontinence provide controversial conclusions possibly related to methodological biases. In order to better understand perception disorders, the aim of this study was to analyse anorectal adaptation to rectal isobaric distension in subjects with incontinence. PATIENTS/METHODS: Between June 95 and December 97, 97 consecutive patients (nine men and 88 women, mean (SEM) age 55 (1) years) suffering from incontinence were evaluated and compared with 15 healthy volunteers (four men and 11 women, mean age 48 (3) years). The patients were classified into three groups according to their perception status to rectal isobaric distensions (impaired, 22; normal, 61; enhanced, 14). Anal and rectal adaptations to increasing rectal pressure were analysed using a model of rectal isobaric distension. RESULTS: The four groups did not differ with respect to age, parity, or sex ratio. Magnitude of incontinence, prevalence of pelvic disorders, and sphincter defects were similar in the incontinent groups. When compared with healthy controls, anal pressure and rectal adaptation to distension were decreased in incontinent patients. When compared with incontinent patients with normal perception, patients with enhanced perception experienced similar rectal adaptation but had reduced anal pressure. In contrast, patients with impaired perception showed considerably decreased rectal adaptation but had similar anal pressure. CONCLUSION: Abnormal sensations during rectal distension are observed in one third of subjects suffering from incontinence. These abnormalities may reflect hyperreactivity or neuropathological damage of the rectal wall.  (+info)

Dynamic strength of the quadriceps muscle and sports activity. (39/12330)

The study objectives were to examine the dynamic strength of the quadriceps muscle in athletes, and investigate its association with participation in sport. The study comprised 168 active competitive non-pregnant athletes, aged 14-24 years. The dynamic strength of their quadriceps muscle was measured, and they answered a questionnaire about sports activity and occupation. The dynamic strength of the quadriceps muscle was significantly higher in men than in women, and was positively associated with body weight, years of jogging, years of soccer, and weekly hours of basketball. In conclusion, the dynamic strength of the quadriceps muscle seems to be associated with sports activity. The results suggest sport specific adaptation, which may reflect high levels of running and jumping activity.  (+info)

Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. (40/12330)

Aquaspillium arcticum is a psychrophilic bacterium that was isolated from arctic sediment and grows optimally at 4 degrees C. We have cloned, purified, and characterized malate dehydrogenase from A. arcticum (Aa MDH). We also have determined the crystal structures of apo-Aa MDH, Aa MDH.NADH binary complex, and Aa MDH.NAD.oxaloacetate ternary complex at 1.9-, 2.1-, and 2.5-A resolutions, respectively. The Aa MDH sequence is most closely related to the sequence of a thermophilic MDH from Thermus flavus (Tf MDH), showing 61% sequence identity and over 90% sequence similarity. Stability studies show that Aa MDH has a half-life of 10 min at 55 degrees C, whereas Tf MDH is fully active at 90 degrees C for 1 h. Aa MDH shows 2-3-fold higher catalytic efficiency compared with a mesophilic or a thermophilic MDH at the temperature range 4-10 degrees C. Structural comparison of Aa MDH and Tf MDH suggests that the increased relative flexibility of active site residues, favorable surface charge distribution for substrate and cofactor, and the reduced intersubunit ion pair interactions may be the major factors for the efficient catalytic activity of Aa MDH at low temperatures.  (+info)