The neuronal basis of a sensory analyser, the acridid movement detector system. I. Effects of simple incremental and decremental stimuli in light and dark adapted animals. (1/1146)

1. The response of the movement detector (MD) system to proportionally constant incremental and decremental stimuli has been studied at various degrees of light and dark adaptation. Action potentials in the descending contralateral movement detector neurone were taken as the indicator of response. 2. Over a range of at least six log10 units of adapting luminance, the MD system behaves as an ON/OFF unit, giving responses to both incremental and decremental changes in the illumination of a 5 degrees target. 3. With increasing amplitudes of stimuli, both the ON and OFF responses saturate rapidly. Saturation is reached sooner at higher levels of light adaptation. At all levels of light adaptation, the OFF response is greater than the ON. The ratio for saturating stimuli is approximately constant at around 3:2. 4. At the brightest adapting luminances used (20 000 cd/m2) the ON response is reduced but not lost. At the lowest (0-004 cd/m2) the OFF response to a 5 degrees disc fails, but can be regained by increasing the test area to 10 degrees. 5. From what is known of the retina of locusts and other insects, it is thought that light and dark adaptation in the MD system can be adequately explained by events at the retinula cell.  (+info)

Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. (2/1146)

The retinal analogue beta-ionone was used to investigate possible physiological effects of the noncovalent interaction between rod opsin and its chromophore 11-cis retinal. Isolated salamander rod photoreceptors were exposed to bright light that bleached a significant fraction of their pigment, were allowed to recover to a steady state, and then were exposed to beta-ionone. Our experiments show that in bleach-adapted rods beta-ionone causes a decrease in light sensitivity and dark current and an acceleration of the dim flash photoresponse and the rate constants of guanylyl cyclase and cGMP phosphodiesterase. Together, these observations indicate that in bleach-adapted rods beta-ionone activates phototransduction in the dark. Control experiments showed no effect of beta-ionone in either fully dark-adapted or background light-adapted cells, indicating direct interaction of beta-ionone with the free opsin produced by bleaching. We speculate that beta-ionone binds specifically in the chromophore pocket of opsin to produce a complex that is more catalytically potent than free opsin alone. We hypothesize that a similar reaction may occur in the intact retina during pigment regeneration. We propose a model of rod pigment regeneration in which binding of 11-cis retinal to opsin leads to activation of the complex accompanied by a decrease in light sensitivity. The subsequent covalent attachment of retinal to opsin completely inactivates opsin and leads to the recovery of sensitivity. Our findings resolve the conflict between biochemical and physiological data concerning the effect of the occupancy of the chromophore binding site on the catalytic potency of opsin. We show that binding of beta-ionone to rod opsin produces effects opposite to its previously described effects on cone opsin. We propose that this distinction is due to a fundamental difference in the interaction of rod and cone opsins with retinal, which may have implications for the different physiology of the two types of photoreceptors.  (+info)

Hypersensitivity in the anterior median eye of a jumping spider. (3/1146)

Changes in sensitivity of the photoreceptor cells of the anterior median eye of the jumping spider Menemerus confusus Boes. et Str. have been studied by recording electroretinograms (ERGs) and receptor potentials. The amplitudes of the responses (ERGs and receptor potentials) increase during repetitive stimulation, with a maximum increase at 3-5 s intervals. The sensitivity of the photoreceptor cell is greater for about 60 s following illumination (maximum magnitude at 3-5 s) than it is during complete dark adaptation. This phenomenon, which we call 'hypersensitivity', is lost within one day following surgery in physiological saline. Upon loss of hypersensitivity, the sensitivity decrease during light adaptation is greater than for the normal eye and the small increase of sensitivity following the onset of illumination observed for the normal eye is lost.  (+info)

Retinoid kinetics in eye tissues of VPP transgenic mice and their normal littermates. (4/1146)

PURPOSE: VPP mice, which possess a mutant transgene for opsin (V20G, P23H, P27L), exhibit a progressive rod degeneration that resembles one form of human autosomal dominant retinitis pigmentosa. In the present study the association of the development of VPP rod degeneration with abnormal operation of the retinoid visual cycle was examined. METHODS: Dark-adapted VPP mice and normal littermates were anesthetized and the pupils dilated. One eye of each animal was illuminated for 2 minutes; the other eye was shielded from the light and served as a control. Each animal was then dark adapted for a defined period (0-300 minutes) and killed. Retinoids contained in the retina, retinal pigment epithelium (RPE), and extracellular medium were recovered by means of formaldehyde-, isopropanol- and ethanol-based extractions and analyzed by high-performance liquid chromatography. RESULTS: Total amounts of retinoid recovered from unilluminated eyes of 2-month-old normal and VPP mice were 425 +/- 90 picomoles per eye and 115 +/- 33 picomoles per eye, respectively (mean +/- SD). Relative distributions of retinoids within normal and VPP eyes were similar. In normal and VPP animals, illumination for 2 minutes produced a similar immediate reduction in the molar percent of total retinoid represented by 11-cis retinal in the retina (average reduction of 34% and 28% in normal and VPP animals, respectively) and a similar transient increase of all-trans retinal in the retina. In both groups the decline of all-trans retinal was accompanied by an increase in total retinyl ester. In normal and VPP animals, a period of approximately 40 minutes or more preceded initiation of the recovery of 11-cis retinal in the retina, and the time course of this recovery was generally similar to that for the decline of retinyl ester. The overall dark-adaptation period required for half-completion of 11-cis retinal recovery was approximately 150 minutes. In neither group did illumination produce a substantial peak of all-trans retinol in the retina. CONCLUSIONS: The evident approximately fourfold reduction of total retinoid in the eyes of 2-month-old VPP mice is consistent with histologic and electroretinographic abnormalities determined in previous studies. Despite this marked abnormality in retinoid content, retinoid cycling in the VPP is remarkably similar to that in normal littermates. The data place constraints on the functional consequences of any abnormality in retinoid processing that may be present at this stage of the VPP rod degeneration.  (+info)

Ocular signs and symptoms and vitamin A status in patients with cystic fibrosis treated with daily vitamin A supplements. (5/1146)

BACKGROUND/AIMS: Patients with cystic fibrosis (CF) may have low plasma vitamin A levels from malabsorption, zinc deficiency, liver disease, or poor compliance with prescribed supplements. In view of the increasing number of adults with CF, many of whom drive cars, it is important to assess vitamin A status. In our centre an attempt has been made to achieve normal levels of fat soluble vitamins by annual estimation of plasma levels and appropriate oral supplementation. This study aimed to determine if this approach prevents vitamin A deficiency and the consequent problems with dark adaptation. METHODS: The study was conducted at the regional adult and paediatric cystic fibrosis unit and the patients were recruited from there. Dark adaptation studies were conducted at the department of ophthalmology, St James's University Hospital. All patients are regularly seen in the outpatient department by a CF specialist dietitian and have a comprehensive annual dietary assessment. 28 patients had the following investigations: serum retinol, plasma zinc, serum retinol binding protein, liver function tests, dark adaptation, contrast sensitivity, and anterior ocular surface status. 25 age and sex matched controls without CF or ocular pathology were also recruited for the dark adaptation study. RESULTS: None of the patients had vitamin A deficiency, the median value of serum retinol being 48 microg/dl, range 31-80 microg/dl (normal range 30-80 microg/dl). Dark adaptation was normal in all cases compared with the control group where the mean value was 3.4 log units of threshold luminance (95% confidence interval 2.4-4.0). None of the test group had a value of threshold luminance 2 SD above the mean value for the control group. Eight patients had reduced contrast sensitivity. The median value for serum zinc was 14.2 micromol/ l, range 13-81 micromol/l (normal range 8-23 micromol/l) and the median value for retinol binding protein was 36 mg/l, range 13-81 mg/l (normal range 35-58 mg/l). There was no correlation between dark adaptation and serum retinol, zinc, or retinol binding protein. Two patients had clinical evidence of dry eye. CONCLUSION: Regular estimates of plasma vitamin A together with appropriate supplementation and expert dietetic review can maintain normal dark adaptation in patients with cystic fibrosis. The occurrence of reduced contrast sensitivity function is well documented but remains an unexplained phenomenon and deserves further study.  (+info)

Testing optimum viewing conditions for mammographic image displays. (6/1146)

The viewbox luminance and viewing room light level are important parameters in a medical film display, but these parameters have not had much attention. Spatial variations and too much room illumination can mask real signal or create the false perception of a signal. This presentation looks at how scotopic light sources and dark-adapted radiologists may identify more real diseases.  (+info)

Effects of inhibiting glutamine synthetase and blocking glutamate uptake on b-wave generation in the isolated rat retina. (7/1146)

The purpose of the present experiments was to evaluate the contribution of the glutamate-glutamine cycle in retinal glial (Muller) cells to photoreceptor cell synaptic transmission. Dark-adapted isolated rat retinas were superfused with oxygenated bicarbonate-buffered media. Recordings were made of the b-wave of the electroretinogram as a measure of light-induced photoreceptor to ON-bipolar neuron transmission. L-methionine sulfoximine (1-10 mM) was added to superfusion media to inhibit glutamine synthetase, a Muller cell specific enzyme, by more than 99% within 5-10 min, thereby disrupting the conversion of glutamate to glutamine in the Muller cells. Threo-hydroxyaspartic acid and D-aspartate were used to block glutamate transporters. The amplitude of the b-wave was well maintained for 1-2 h provided 0.25 mM glutamate or 0.25 mM glutamine was included in the media. Without exogenous glutamate or glutamine the amplitude of the b-wave declined by about 70% within 1 h. Inhibition of glutamate transporters led to a rapid (2-5 min) reversible loss of the b-wave in the presence and absence of the amino acids. In contrast, inhibition of glutamine synthetase did not alter significantly either the amplitude of the b-wave in the presence of glutamate or glutamine or the rate of decline of the b-wave found in the absence of these amino acids. Excellent recovery of the b-wave was found when 0.25 mM glutamate was resupplied to L-methionine sulfoximine-treated retinas. The results suggest that in the isolated rat retina uptake of released glutamate into photoreceptors plays a more important role in transmitter recycling than does uptake of glutamate into Muller cells and its subsequent conversion to glutamine.  (+info)

Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram. (8/1146)

1. We recorded the a-wave of the human electroretinogram from subjects with normal vision, using a corneal electrode and ganzfeld (full-field) light stimulation. From analysis of the rising phase of rod-isolated flash responses we determined the maximum size (amax) of the a-wave, a measure of the massed circulating current of the rods, and the amplification constant (A) of transduction within the rod photoreceptors. 2. During light adaptation by steady backgrounds the maximal response was reduced, as reported previously. amax declined approximately as I0/(I0 + IB), where IB is retinal illuminance and I0 is a constant. In different subjects I0 ranged from 40 to 100 trolands, with a mean of 70 trolands, corresponding to about 600 photoisomerizations s-1 per rod. (1 troland is the retinal illuminance that results when a surface luminance of 1 cd m-2 is viewed through a pupil area of 1 mm2.) The amplification constant A decreased only slightly in the presence of steady backgrounds. 3. Following a full bleach amax recovered along an S-shaped curve over a period of 30 min. There was no detectable response for the first 5 min, and half-maximal recovery took 13-17 min. 4. The apparent amplification constant decreased at early times after large bleaches. However, upon correction for reduced light absorption due to loss of pigment, with regeneration of rhodopsin occurring with a time constant of 9-15 min in different subjects, it appeared that the true value of A was probably unchanged by bleaching. 5. The recovery of amax following a bleach could be converted into recovery of equivalent background intensity, using a 'Crawford transformation' derived from the light adaptation results. Following bleaches ranging from 10 to > 99 %, the equivalent background intensity decayed approximately exponentially, with a time constant of about 3 min. 6. The time taken for amax to recover to a fixed proportion of its original level increased approximately linearly (rather than logarithmically) with fractional bleach, with a slope of about 12 min per 100 % bleach. Similar behaviour has previously been seen in psychophysical dark adaptation experiments, for the dependence of the 'second component' of recovery on the level of bleaching.  (+info)