Ciprofloxacin decreases the rate of ethanol elimination in humans. (1/696)

BACKGROUND: Extrahepatic ethanol metabolism is postulated to take place via microbial oxidation in the colon, mediated by aerobic and facultative anaerobic bacteria. AIMS: To evaluate the role of microbial ethanol oxidation in the total elimination rate of ethanol in humans by reducing gut flora with ciprofloxacin. METHODS: Ethanol was administered intravenously at the beginning and end of a one week period to eight male volunteers. Between ethanol doses volunteers received 750 mg ciprofloxacin twice daily. RESULTS: A highly significant (p=0.001) reduction in the ethanol elimination rate (EER) was detected after ciprofloxacin medication. Mean (SEM) EER was 107.0 (5.3) and 96.9 (4.8) mg/kg/h before and after ciprofloxacin, respectively. Faecal Enterobacteriaceae and Enterococcus sp. were totally absent after medication, and faecal acetaldehyde production capacity was significantly (p<0.05) decreased from 0.91 (0.15) to 0.39 (0.08) nmol/min/mg protein. Mean faecal alcohol dehydrogenase (ADH) activity was significantly (p<0. 05) decreased after medication, but ciprofloxacin did not inhibit human hepatic ADH activity in vitro. CONCLUSIONS: Ciprofloxacin treatment decreased the ethanol elimination rate by 9.4%, with a concomitant decrease in intestinal aerobic and facultative anaerobic bacteria, faecal ADH activity, and acetaldehyde production. As ciprofloxacin has no effect on liver blood flow, hepatic ADH activity, or cytochrome CYP2E1 activity, these effects are probably caused by the reduction in intestinal flora.  (+info)

Inhibition of advanced glycation endproduct formation by acetaldehyde: role in the cardioprotective effect of ethanol. (2/696)

Epidemiological studies suggest that there is a beneficial effect of moderate ethanol consumption on the incidence of cardiovascular disease. Ethanol is metabolized to acetaldehyde, a two-carbon carbonyl compound that can react with nucleophiles to form covalent addition products. We have identified a biochemical modification produced by the reaction of acetaldehyde with protein-bound Amadori products. Amadori products typically arise from the nonenzymatic addition of reducing sugars (such as glucose) to protein amino groups and are the precursors to irreversibly bound, crosslinking moieties called advanced glycation endproducts, or AGEs. AGEs accumulate over time on plasma lipoproteins and vascular wall components and play an important role in the development of diabetes- and age-related cardiovascular disease. The attachment of acetaldehyde to a model Amadori product produces a chemically stabilized complex that cannot rearrange and progress to AGE formation. We tested the role of this reaction in preventing AGE formation in vivo by administering ethanol to diabetic rats, which normally exhibit increased AGE formation and high circulating levels of the hemoglobin Amadori product, HbA1c, and the hemoglobin AGE product, Hb-AGE. In this model study, diabetic rats fed an ethanol diet for 4 weeks showed a 52% decrease in Hb-AGE when compared with diabetic controls (P < 0.001). Circulating levels of HbA1c were unaffected by ethanol, pointing to the specificity of the acetaldehyde reaction for the post-Amadori, advanced glycation process. These data suggest a possible mechanism for the so-called "French paradox," (the cardioprotection conferred by moderate ethanol ingestion) and may offer new strategies for inhibiting advanced glycation.  (+info)

Inhibition and stimulation of long-chain fatty acid oxidation by chloroacetaldehyde and methylene blue in rats. (3/696)

The effects of chloroacetaldehyde (CAA) and methylene blue, both alone and together, on mitochondrial metabolism, hepatic glutathione content, and bile flow were investigated in rats. Oxidation of [1-14C]palmitic acid, [1-14C]octanoic acid, and [1,4-14C]succinic acid allowed for the differentiation between carnitine-dependent long-chain fatty acid metabolism, medium chain fatty acid oxidation, and citric acid cycle activity, respectively. CAA, a metabolite of the anticancer drug ifosfamide, which may be responsible for ifosfamide-induced encephalopathy, inhibited palmitic acid metabolism but not octanoic or succinic acid oxidation, depleted hepatic glutathione, and stimulated bile flow. Methylene blue, which is clinically used to either prevent or reverse ifosfamide-associated encephalopathy, markedly stimulated palmitic acid oxidation either in the presence or absence of CAA, but did not affect the oxidation of octanoic and succinic acid or hepatic glutathione. Taken together, this study demonstrates that CAA inhibits palmitic acid metabolism. Methylene blue stimulates long-chain fatty acid oxidation, most likely by facilitating the translocation of fatty acids into mitochondria, and compensates for the CAA effect in vivo.  (+info)

Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. (4/696)

NADPH is known to be tightly bound to mammalian catalase and to offset the ability of the substrate of catalase (H2O2) to convert the enzyme to an inactive state (compound II). In the process, the bound NADPH becomes NADP+ and is replaced by another molecule of NADPH. This protection is believed to occur through electron tunneling between NADPH on the surface of the catalase and the heme group within the enzyme. The present study provided additional support for the concept of an intermediate state of catalase, through which NADPH serves to prevent the formation (rather than increase the removal) of compound II. In contrast, the superoxide radical seemed to bypass the intermediate state since NADPH had very little ability to prevent the superoxide radical from converting catalase to compound II. Moreover, the rate of NADPH oxidation was several times the rate of compound II formation (in the absence of NADPH) under a variety of conditions. Very little NADPH oxidation occurred when NADPH was exposed to catalase, H2O2, or the superoxide radical separately. That the ratio exceeds 1 suggests that NADPH may protect catalase from oxidative damage through actions broader than merely preventing the formation of compound II.  (+info)

Modification of type III VLDL, their remnants, and VLDL from ApoE-knockout mice by p-hydroxyphenylacetaldehyde, a product of myeloperoxidase activity, causes marked cholesteryl ester accumulation in macrophages. (5/696)

Very low density lipoproteins (VLDLs) from apolipoprotein (apo) E2/E2 subjects with type III hyperlipoproteinemia, VLDL remnants, and VLDL from apoE-knockout (EKO) mice are taken up poorly by macrophages. The present study examined whether VLDL modification by the reactive aldehyde p-hydroxyphenylacetaldehyde (pHA) enhances cholesteryl ester (CE) accumulation by J774A.1 macrophages. pHA is the major product derived from the oxidation of L-tyrosine by myeloperoxidase and is a component of human atherosclerotic lesions. Incubation of J774A.1 cells with native type III VLDL, their remnants, and EKO-VLDL increased cellular CE by only 3-, 5-, and 5-fold, respectively, compared with controls. In striking contrast, cells exposed to VLDL modified by purified pHA (pHA-VLDL) exhibited marked increases in cellular CE of 38-, 47-, and 35-fold, respectively (P95%, CE accumulation induced by copper-oxidized VLDL. These results demonstrate a novel mechanism for the conversion of type III VLDLs, their remnants, and EKO-VLDL into atherogenic particles and suggest that macrophage uptake of pHA-VLDL (1) requires catalytically active lipoprotein lipase, (2) involves acyl coenzyme A:cholesterol acyltransferase-mediated cholesterol esterification, and (3) involves pathways distinct from the SR-A.  (+info)

Development of a polyclonal antibody with broad epitope specificity for advanced glycation endproducts and localization of these epitopes in Bruch's membrane of the aging eye. (6/696)

PURPOSE: To develop an antibody that recognizes a variety of advanced glycation endproduct (AGE) epitopes. METHODS: Glycolaldehyde was used to modify bovine serum albumin and HPLC analysis was used to measure pentosidine formation as an indicator of AGE formation. A polyclonal anti-AGE antibody was synthesized by injecting glycolaldehyde-incubated keyhole limpet hemocyanin into rabbits, affinity purified using AGE modified bovine serum albumin coupled to an affinity resin column, and characterized by immunoblot analysis. RESULTS: HPLC analysis of glycolaldehyde treated bovine serum albumin detected high levels of pentosidine formation, suggesting that glycolaldehyde is a potent precursor for pentosidine. By immunoblot analysis, our antibody recognized carboxymethyllysine and pentosidine, two well-characterized AGEs, as well as other AGE epitopes. Immunohistochemical evaluation showed evidence of AGEs in Bruch's membrane (including basal laminar deposits and drusen), choroidal extracellular matrix, and vessel walls in an 82 year old nondiabetic globe. A similar staining pattern was observed in an age-matched diabetic control. In contrast, no staining was seen with the antibody in a 20 month old nondiabetic globe. CONCLUSIONS: A unique anti-AGE antibody was synthesized that recognizes a variety of AGE epitopes including carboxymethyllysine and pentosidine. Its best use might be in broad surveys of the age-dependent accumulation of a large number of AGE epitopes that might not be revealed by antibodies to pentosidine or CML.  (+info)

The effect of inhibition of aldehyde dehydrogenase on nasal uptake of inspired acetaldehyde. (7/696)

At exposure concentrations of 750 ppm or more, acetaldehyde is a rodent inhalation carcinogen that induces nasal tumors. Aldehyde dehydrogenase (ALDH) is thought to be an important detoxifying enzyme for aldehydes. Although nasal tissues express ALDH, the importance of this enzyme relative to delivered dosage rates at high-inspired concentrations is not well defined. To provide such information, uptake of inspired acetaldehyde was measured at an inspiratory flow rate that approximated the minute ventilation rate in the surgically isolated nasal cavity of F 344 rats pretreated with either saline (control) or the ALDH inhibitor, cyanamide (10 mg/kg s.c.). ALDH activities (substrate concentration 3 times the K(m)) in anterior (respiratory mucosa) and posterior (olfactory mucosa) nasal tissues averaged 160 and 210 nmol/min), respectively, in control animals (total activity 370 nmol/min), compared to 60 and 80 nmol/min, respectively, in cyanamide-pretreated rats (p < 0.05), indicating that approximately 60% inhibition was obtained. Nasal uptake was measured at 3 inspired concentrations: 10, 300, and 1500 ppm. At these concentrations, acetaldehyde uptake efficiency averaged 54, 37, and 34% in saline-pretreated rats, respectively (p < 0.05). In absolute terms, the delivered dosage rates at these exposure concentrations averaged 21, 420, and 1990 nmol/min. The concentration dependence on uptake suggests a saturable process was involved. At inspired concentrations of 300 ppm or more, the delivered dosage rates exceeded the measured specific activity for nasal ALDH of 370 nmol/min. Cyanamide pretreatment abolished the concentration dependence. Specifically, uptake efficiencies in cyanamide-pretreated rats averaged 30, 27, and 31% at inspired concentrations of 10, 300, and 1500 ppm, respectively (p > 0.05); delivered dosage rates were 12, 310, and 1780 nmol/min. Thus, cyanamide pretreatment reduced nasal-delivered dosage rates at inspired concentrations of 10, 300, and 1500 ppm, respectively by 9, 110, and 210 nmol/min, values that correspond well with the total nasal ALDH activity of 370 nmol/min. In toto, these results suggest that inspired acetaldehyde is metabolized in situ by ALDH, but at exposure concentrations of 300 ppm or greater, the delivered dosage rate may equal or exceed the capacity of this enzyme.  (+info)

Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. (8/696)

The P450 2E1-catalyzed oxidation of ethanol to acetaldehyde is characterized by a kinetic deuterium isotope effect that increases K(m) with no effect on k(cat), and rate-limiting product release has been proposed to account for the lack of an isotope effect on k(cat) (Bell, L. C., and Guengerich, F. P. (1997) J. Biol. Chem. 272, 29643-29651). Acetaldehyde is also a substrate for P450 2E1 oxidation to acetic acid, and k(cat)/K(m) for this reaction is at least 1 order of magnitude greater than that for ethanol oxidation to acetaldehyde. Acetic acid accounts for 90% of the products generated from ethanol in a 10-min reaction, and the contribution of this second oxidation has been overlooked in many previous studies. The noncompetitive intermolecular kinetic hydrogen isotope effects on acetaldehyde oxidation to acetic acid ((H)(k(cat)/K(m))/(D)(k(cat)/K(m)) = 4.5, and (D)k(cat) = 1.5) are comparable with the isotope effects typically observed for ethanol oxidation to acetaldehyde, and k(cat) is similar for both reactions, suggesting a possible common catalytic mechanism. Rapid quench kinetic experiments indicate that acetic acid is formed rapidly from added acetaldehyde (approximately 450 min(-1)) with burst kinetics. Pulse-chase experiments reveal that, at a subsaturating concentration of ethanol, approximately 90% of the acetaldehyde intermediate is directly converted to acetic acid without dissociation from the enzyme active site. Competition experiments suggest that P450 2E1 binds acetic acid and acetaldehyde with relatively high K(d) values, which preclude simple tight binding as an explanation for rate-limiting product release. The existence of a rate-determining step between product formation and release is postulated. Also proposed is a conformational change in P450 2E1 occurring during the course of oxidation and the discrimination of P450 2E1 between acetaldehyde and its hydrated form, the gem-diol. This multistep P450 reaction is characterized by kinetic control of individual reaction steps and by loose binding of all ligands.  (+info)